The Negative Thermal Expansion Property of NdMnO3 Based on Pores Effect and Phase Transition
Yucheng Li , Yang Zhang , Muqun Zhang , Rong Duan , Xiteng Liu
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (1) : 39 -43.
The Negative Thermal Expansion Property of NdMnO3 Based on Pores Effect and Phase Transition
A novel negative thermal expansion (NTE) material NdMnO3 was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO3 were investigated by variable temperature X-ray diffraction (XRD), scanning electron microscope (SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O′ phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO3 shows negative thermal expansion of −4.7×10−6/K. As temperature increases, the ceramic NdMnO3 presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is −18.88×10−6/K. The physical mechanism of NTE is discussed and clarified through experiments.
negative thermal expansion / NdMnO3 / pores effect / phase transition
| [1] |
Wang Junping, Chen Qingdong, Chen Ligang, et al. Low Thermal Expansion, Phase Transition and Luminescence Properties of ZrxAl2−x Mo3−xVxO12[J]. Ceramics International, 2021 (47): 2 607–2 614 |
| [2] |
Azuma M, Chen W T, Seki H, et al. Colossal Negative Thermal Expansion in BiNiO3 Induced by Intermetallic Charge Transfer[J]. Nature Communications, 2011(2): 347–351 |
| [3] |
Li YuCheng, Liu Cunyuan, Chao MingJu, et al. Negative Thermal Expansion Property of Eu0.8Sr0.2MnO3−δ[J]. Results in Materials, 2020(8): 100 154–100 158 |
| [4] |
Wang Xianli, Fu Linjie, Xu Kun, et al. Negative Thermal Expansion of (ZrMg)xY2−2xMo3O12 Ceramics with Low Hygroscopicity[J]. Journal of Wuhan University of Technology, 2020(35): 53–56 |
| [5] |
Naike Shi, Andrea Sanson, Qiang Sun, et al. Strong Negative Thermal Expansion of Cu2PVO7 in a Wide Temperature Range[J]. Chemistry of Materials, 2021(33): 1 321–1 329 |
| [6] |
Hayato Ishizaki, Yuki Sakai, Takumi Nishikubo, et al. Negative Thermal Expansion in Lead-Free La-Substituted Bi0.5Na0.5VO3[J]. Chemistry of Materials, 2020(32): 4 832–4 837 |
| [7] |
Naike Shi, Andrea Sanson, Alessandro Venier, et al. Negative and Zero Thermal Expansion in α-(Cu2−xZnx)V2O7 Solid Solutions[J]. Chemical Communications, 2020(56): 10 666–10 669 |
| [8] |
Wang Hui, Yang, Mengjie, Chao Mingju, et al. Negative Thermal Expansion Property of β-Cu2V2O7[J] Solid State Ionics, 2019(343): 115 086–115 093 |
| [9] |
Yuan Huanli, Gao Qilong, Xu Peng, et al. Understanding Negative Thermal Expansion of Zn2GeO4 through Local Structure and Vibrational Dynamics[J]. Inorganic Chemistry, 2021(60): 1 499–1 505 |
| [10] |
Fernando D Vila, Scott T Hayashi, John J Rehr. Efficient Calculation of the Negative Thermal Expansion in ZrW2O8[J]. Frontiers in Chemistry, 2018(6): 296–305 |
| [11] |
Handunkanda SU, Curry EB, Voronov V, et al. Infrared Lattice Dynamics in Negative Thermal Expansion Material in Single-crystal ScF3[J]. Journal of Physics Condensed Matter, 2020(32): 035 403–035 408 |
| [12] |
Li YuCheng, Zhang Yang, Zhang Niu, et al. Negative Thermal Expansion Property of Sm1−xCuxMnO3−δ[J]. Journal of Materials Research and Technology, 2021(12): 2 267–2 272 |
| [13] |
GILLERY F H, BUSH E A. Thermal Contraction of β-Eucryptite (Li2O.Al2O3.2SiO2) by X-Ray and Dilatometer Methods[J]. Journal of the American Ceramic Society, 1959(42): 175–177 |
| [14] |
Zhang Niu, Li Li, Wu MingYi, et al. Negative Thermal Expansion and Electrical Properties of Alpha-Cu2V2O7[J]. Journal of the European Ceramic Society, 2016(36): 2 761–2 766 |
| [15] |
Warne-Lang V, Sato M, Ozeki M, et al. Annealing Effects on Negative Thermal Expansion Properties of Ball-milled β-Cu1.8Zn0.2V2O7 Fine Particles[J]. Ceramics International, 2020(46): 27 655–27 659 |
| [16] |
Xu Sen, Hu Yang ming, Liang Yuan, et al. Negative Thermal Expansion of Ca2RuO4 with Oxygen Vacancies[J]. Chinese Physics B, 2020(29): 1–7 |
| [17] |
Kuwahara H, Noda K, Nagayama J, et al. Magnetic-Field and External-Pressure Control of Ferroelectricity in Multiferroic[J]. Manganites Physics, 2004(12): 1 279–1 281 |
| [18] |
Kimura T, Watanabe H, Yamasaki Y, et al. Anticorrelation between Ferromagnetism and Ferroelectricity in Perovskite Manganites[J]. Physical Review B, 2005(72): 403–406 |
| [19] |
Kimura T, Lawes G, Goto T, et al. Magnetoelectric Phase Diagrams of Orthorhombic RMnO3 (R=Gd, Tb, and Dy)[J]. Physical Review B, 2005(71): 224 425–224 437 |
| [20] |
Noda K, Nakamura S, Kuwahara H. Control of Ferroelectric Phase by Chemical Pressure in (Gd, Tb)MnO3 Crystals[J]. IEEE Transactions on Magnetics, 2006(41): 2 814–2 816 |
| [21] |
Gü ldal Serkan, Polat, Yasin. Edge and Surface Antiferromagnetism in ABO3 Perovskite-type Nanoparticle within the Effective Field Theory[J]. Philosophical Magazine, 2020(100): 642–657 |
| [22] |
Bjørheim Tor S, Kuwabara Akihide, Ahmed Istaq, et al. A Combined Conductivity and DFT Study of Protons in PbZrO3 and Alkaline Earth Zirconate Perovskites[J]. Solid State Ionics, 2010(181): 130–137 |
| [23] |
Yang LB, Jing LQ, Li SD, at el. Design and Synthesis of a Visible Light Driven Photocatalyst LaCo0.5Ti0.5O3 with ABO3-type Perovskite Structure[J]. Chemical Journal of Chinese Universities, 2007(28): 415–418 |
| [24] |
Ba YS, Ba DC. (Nd0.62Li0.15)TiO3 Ceramics Preparation and Thermoelectric Property Characterization[J]. Journal of Northeastern University, 2019(40): 1 403–1 407 |
| [25] |
Nguyen The Hien, Nguyen Phu Thuy. Preparation and Magneto-caloric Effect of La1−xAgxMnO3 (x=0.10–0.30) Perovskite Compounds[J]. Physica B, 2002(319): 168–173 |
| [26] |
Vyas, Brinda Kundalia, Hetal Udeshi, et al. Structure and Magnetic Behavior of Zn Doped NdMnO3 Manganite: Neutron Diffraction Study[J]. Ceramics International, 2017(43): 14 962–14 967 |
| [27] |
Von Helmolt R, Holzapfel B, Schultz L, et al. Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnO3 Ferromagnetic Films[J]. Phy. Rev. Lett, 1993(71): 2 331–2 333 |
| [28] |
Kozhina GA, Ermakov AN, Fetisov AV, et al. Effect of Mechanical Activation on the Electrochemical Properties of NdMnO3 + δ[J]. Doklady Physical Chemistry, 2014(459): 190–193 |
| [29] |
Hirano A, Hirano F, Matsumura T, et al. An Anomalous Thermal Expansion in the Perovskite System Gd1−xSrxMnO3(0 ⩽ x ⩽ 0.3)[J]. Solid State Ionics, 2007(177): 749–755 |
| [30] |
Fu LinJie, Chao MingJu, Chen He, et al. Negative Thermal Expansion Property of Er0.7Sr0.3NiO3−δ[J]. Physics Letters A, 2014(378): 1 909–1 912 |
| [31] |
Araya-Rodriguez E, Ramos AY, Tolentino HCN, et al. Local Distortion in LaMnO3 Across the Jahn–Teller Transition[J]. Journal of Magnetism and Magnetic Materials, 2001 (233): 88–90 |
| [32] |
Ding Junyan, Liu Jing, Yang Yingju, et al. Reaction Mechanism of Dichloromethane Oxidation on LaMnO3 Perovskite[J]. Chemosphere, 2021(277): 130 194–130 202 |
| [33] |
Badwal SPS, Jiang SP, Love J, et al. A Manometric Method for the Determination of Chemical Diffusion in Perovskite-type Cathode Materials of the Solid Oxide Fuel Cell[J]. Ceramics International, 2001(27): 431–441 |
| [34] |
Kobayashi M, Satoh H, Kamegashira. Phase Behavior of La1−xMnO3−1.5x with Trivalent Manganese[J]. Materials Science Forum, 2005 (449): 449–452 |
| [35] |
KumarA, Yusuf SM, Ritter C. Nd-ordering-driven Mn Spin Reorientation and Magnetization Reversal in the Magnetostructurally Coupled Compound NdMnO3[J]. Physical Review B, 2017(96): 2 469–9 950 |
| [36] |
Chen W, Nie LY, Zhong W, et al. Magnetocaloric Effect in Nd Doped Perovskite La0.7−xNdxBa0.3MnO3 Polycrystalline Near Room Temperature[J]. Journal of Alloys and Compounds, 2006(395): 23–25 |
| [37] |
Matsui M, Yong Jie Teng, Kurihama T. DSC and Single-crystal X-ray Structural Study on Phase Transitions in RbNaSO4[J]. Ferroelectrics, 2017(513): 62–66 |
| [38] |
Vedmid LB, Yankin AM, Fedorova OM, et al. Effect of Structural Transitions on the Thermodynamic Properties of NdMnO3 Compound[J]. Bulletin of the Russian Academy of Sciences: Physics, 2014(78): 296–298 |
| [39] |
Koshi Takenaka. Progress of Research in Negative Thermal Expansion Materials: Paradigm Shift in the Control of Thermal Expansion[J]. Frontiers in Chemistry, 2018(6): 1–13 |
| [40] |
Erjun Liang, Qiang Sun, Huanli Yuan, et al. Negative Thermal Expansion: Mechanisms and Materials, Frontiers of Physics[J]. 2021(16): 69–105 |
/
| 〈 |
|
〉 |