Appreciable Enhancement of Photocatalytic Performance for N-doped SrMoO4 via the Vapor-thermal Method

Zhiqiang Yun , Zhenxiang Dai , Liwei Zhu , Ganhong Zheng

Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (1) : 24 -31.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2024, Vol. 39 ›› Issue (1) : 24 -31. DOI: 10.1007/s11595-024-2850-5
Advanced Materials

Appreciable Enhancement of Photocatalytic Performance for N-doped SrMoO4 via the Vapor-thermal Method

Author information +
History +
PDF

Abstract

A series of nitrogen-doped SrMoO4 with different Sr/N mole ratio (R=0, 0.05, 0.10, 0.15, 0.20, 0.40, and 0.60) were synthesized using urea as the N source via the vapor-thermal method. The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant. The band gaps of N-doped samples are all higher than that of pristine ones, which is only 3.12 eV. BET specific surface area S BET and pore volume are increased due to the N doping. And the greater increase of S BET, the faster the photodegradation speed of methylene blue on SrMoO4. More specifically, the degradation efficiency of MB is improved up to 87% in 100 min.

Keywords

SrMoO4 / photocatalytic property / nitrogen element doping

Cite this article

Download citation ▾
Zhiqiang Yun, Zhenxiang Dai, Liwei Zhu, Ganhong Zheng. Appreciable Enhancement of Photocatalytic Performance for N-doped SrMoO4 via the Vapor-thermal Method. Journal of Wuhan University of Technology Materials Science Edition, 2024, 39(1): 24-31 DOI:10.1007/s11595-024-2850-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldini E, Palmieri T, Dominguez A, et al. Phonon-Driven Selective Modulation of Exciton Oscillator Strengths in Anatase TiO2 Nanoparticles[J]. Nano Lett., 2018, 18(8): 5 007-5 014.

[2]

Zhuang Y X, Katayama Y, Ueda J, et al. A Brief Review on Red to Near-Infrared Persistent Luminescence in Transition-Metal-Activated Phosphors[J]. Opt. Mater., 2014, 36(11): 1 907-1 912.

[3]

Lacomba P R, Errandonea D, Segura A, et al. A Combined High-Pressure Experimental and Theoretical Study of the Electronic Band-Structure of Scheelite-Type AWO4(A= Ca, Sr, Ba, Pb) Compounds[J]. J. Appl. Phys., 2011, 110(4): 043 703

[4]

Bi J, Wu L, Zhang Y, et al. Solvothermal Preparation, Electronic Structure, and Photocatalytic Properties of PbMoO4 and SrMoO4[J]. Appl. Catal. B: Environ., 2009, 91(1–2): 135-143.

[5]

Zhang J, Hao Z, Li J, et al. Observation of Efficient Population of the Red-Emitting State from the Green State by Non-Multiphonon Relaxation in the Er3+−Yb3+ System[J]. Light Sci. Appl., 2015, 4(1): e239

[6]

Datta R S, Ou J Z, Mohiuddin M D, et al. Two-Dimensional PbMoO4: A Photocatalytic Material Derived from a Naturally Non-Layered Crystal[J]. Nano Energy, 2018, 49: 237-246.

[7]

Borgschulte A, Sambalova O, Delmelle R, et al. Hydrogen Reduction of Molybdenum Oxide at Room Temperature[J]. Sci. Rep., 2017, 7(1): 1-9.

[8]

Zhu Y N, Zheng G H, Dai Z X, et al. Mono-Disperse SrMoO4 Nanocrystals: Synthesis, Luminescence, and Photocatalysis[J]. J. Mater. Sci. Technol., 2017, 33(8): 834-842.

[9]

Yao Z F, Zheng G H, Dai Z X, et al. Synthesis of the Dy: SrMoO4 with High Photocatalytic Activity under Visible Light Irradiation[J]. Appl. Organomet. Chem., 2018, 32(8): e4 412

[10]

Guo S, Hua J, Dai Z, et al. Two-Step Continuous Synthesis of Dicarbonyl Indoles via I2/DMSO-Promoted Oxidative Coupling: A Green and Practical Approach to Valuable Diketones from Aryl Acetaldehydes[J]. ACS Sustain. Chem. Eng., 2018, 6(6): 7 979-7 988.

[11]

Li J, Zhang X, Ali S, et al. The Effect of Polyethylene Glycol Diacrylate Complexation on Type II Photoinitiator and Promotion for Visible Light Initiation System[J]. J. Photochem. Photobiol. A: Chem., 2019, 384: 112 037.

[12]

Zhu Y N, Zheng G H, Dai Z X, et al. Mono-Disperse SrMoO4 Nanocrystals: Synthesis, Luminescence, and Photocatalysis[J]. J. Mater. Sci. Technol., 2017, 33(8): 834-842.

[13]

Wang G, Ling Y, Wang H, et al. Hydrogen-Treated WO3 Nanoflakes Show Enhanced Photostability[J]. Energy & Environ. Sci., 2012, 5(3): 6 180-6 187.

[14]

Atkinson I, Parvulescu V, Cusu J P, et al. Influence of Preparation Method and Nitrogen (N) Doping on Properties and Photo-Catalytic Activity of Mesoporous SrTiO3[J]. J. Photochem. Photobiol. A: Chem., 2019, 368: 41-51.

[15]

Vidya S, Solomon S, Thomas J K. Synthesis, Sintering, and Optical Properties of CaMoO4: A Promising Scheelite LTCC and Photoluminescent Material[J]. Phys. Status Solidi (A), 2012, 209(6): 1 067-1 074.

[16]

Wang S P, Yao Z F, Zhang L Y, et al. Enhanced Photocatalytic Activity of SrMoO4 via SrMo(O, N)3 Formation by Annealing in NH3 Atmosphere[J]. J. Electron. Mater., 2019, 48(10): 6 617-6 630.

[17]

Chen X, Liu L, Yu P Y, et al. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals[J]. Science, 2011, 331(6018): 746-750.

[18]

Liu Y, Li J, Li J, et al. Active Magnetic Fe3+-doped BiOBr Micromotors as Efficient Solar Photo-fenton Catalyst[J]. J. Clean. Prod., 2020, 252: 119 573.

[19]

Cavalcante L S, Marques V S, Sczancoski J C, et al. Synthesis, Structural Refinement, and Optical Behavior of CaTiO3 Powders: A Comparative Study of Processing in Different Furnaces[J]. Chem. Eng. J., 2008, 143(1–3): 299-307.

[20]

Sadegh M, Badiei A. Synthesis of CaWO4: Er3+@SiO2 and CaWO4: Tm3+@SiO2 Nano-Particles via a Combustion Pathway and Study of Their Optical Properties[J]. Res. Chem. Intermed., 2014, 40(5): 2 007-2 014.

[21]

Sczancoski J C, Cavalcante L S, Marana N L, et al. Electronic Structure and Optical Properties of BaMoO4 Powders[J]. Curr. Appl. Phys., 2010, 10(2): 614-624.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/