Nacre-inspired Zirconia/Carbon Nanocomposites with High Strength and Toughness

Zexing Liu , Hang Ping , Kun Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (4) : 771 -777.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (4) : 771 -777. DOI: 10.1007/s11595-023-2758-5
Advanced Materials

Nacre-inspired Zirconia/Carbon Nanocomposites with High Strength and Toughness

Author information +
History +
PDF

Abstract

Inspired by structures of natural shells, zirconia-carbon nanocomposites were obtained by using natural chitin from shrimp shells as templates via the sol-gel route in this study. Chitin was dispersed in the water and chelated with the zirconia precursors by amidogen. After a heat treatment for carbonization, nacre-like structures of carbon-zirconia nanocomposites were successfully synthesized. Due to the toughening mechanism of tetragonal zirconia, the mechanical properties of carbon-zirconia composites are further improved. The as-received zirconia/carbon nanocomposite with best mechanical property has a hardness of 5.88 GPa and an elastic modulus of 80.6 GPa, which is even stronger than natural shells. This work might facilitate a versatile platform for developing green nanocomposites with reasonably good mechanical properties.

Keywords

zirconia/carbon nanocomposites / sol-gel / chelation / hardness / elastic modulus

Cite this article

Download citation ▾
Zexing Liu, Hang Ping, Kun Wang. Nacre-inspired Zirconia/Carbon Nanocomposites with High Strength and Toughness. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(4): 771-777 DOI:10.1007/s11595-023-2758-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meyers MA, Chen PY, Lin YM, Seki Y. Biological Materials: Structure and Mechanical Properties[J]. Progress in Materials Science, 2008, 53(1): 1-206.

[2]

Wang J, Cheng Q, Tang Z. Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre[J]. Chemical Society Reviews, 2012, 41(3): 1 111-1 129.

[3]

Huang W, Restrepo D, Jung JO, Su FY, Kisailus D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs[J]. Advanced Materials, 2019, 31(43): e1901561

[4]

Wegst UGK, Ashby MF. The Mechanical Efficiency of Natural Materials[J]. Philosophical Magazine, 2004, 84(21): 2 167-2 186.

[5]

Wegst UGK, Hao B, Eduardo S, Tomsia AP, Ritchie RO. Bioinspired Structural Materials[J]. Nature Materials, 2018, 14(1): 23-36.

[6]

Addadi L, Weiner S. Biomineralization: A Pavement of Pearl[J]. Nature, 1997, 389(6654): 912-915.

[7]

Mayer G. Rigid Biological Systems as Models for Synthetic Composites[J]. Science, 2005, 310(5751): 1 144-1 147.

[8]

Mayer G, Sarikaya M. Rigid Biological Composite Materials: Structural Examples for Biomimetic Design[J]. Experimental Mechanics, 2002, 42(4): 395-403.

[9]

Mao LB, Gao HL, Yao HB, Liu L, Colfen H, Liu G, Chen SM, Li SK, Yan YX, Liu YY. Synthetic Nacre by Predesigned Matrix-directed Mineralization[J]. Science, 2016, 354(6308): 107-110.

[10]

Yao HB, Ge J, Mao LB, Yan YX, Yu SH. 25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications[J]. Advanced Materials, 2014, 26(1): 192-192.

[11]

Yao H, Fang H, Tan Z, Wu L, Yu S. Biologically Inspired, Strong, Transparent, and Functional Layered Organic-Inorganic Hybrid Films[J]. Angewandte Chemie International Edition, 2010, 49(12): 2 140-2 145.

[12]

Cong H, Chen J, Yu S. Graphene-based Macroscopic Assemblies and Architectures: An Emerging material System[J]. Chemical Society Reviews, 2014, 43(21): 7 295-7 325.

[13]

Huang C, Cheng Q. Learning from Nacre: Constructing Polymer Nanocomposites[J]. Composites Science & Technology, 2017, 150: 141-166.

[14]

Peng J, Cheng Q. High-Performance Nanocomposites Inspired by Nature[J]. Advanced Materials, 2017, 29(45): 1702959.1-1702959.16.

[15]

Berglund LA. Clay Nanopaper Composites of Nacre-like Structure Based on Montmorrilonite and Cellulose Nanofibers-Improvements Due to Chitosan Addition[J]. Carbohydrate Polymers, 2012, 87(1): 53-60.

[16]

Wang L, Dong BX, Qiu F, Geng R, Jiang QC. Dry Sliding Friction and Wear Characterization of in situ TiC/Al-Cu3.7-Mg1.3 Nanocomposites with Nacre-like Structures[J]. Journal of Materials Research and Technology, 2020, 9(1): 641-653.

[17]

Raut HK, Schwartzman AF, Das R, Liu F, Fernandez JG. Tough and Strong: Cross-Lamella Design Imparts Multifunctionality to Biomimetic Nacre[J]. Acs Nano, 2020, 14(8): 9 771-9 779.

[18]

Wang Z, Sun Y, Wu H, Zhang C. Low Velocity Impact Resistance of Bio-inspired Building Ceramic Composites with Nacre-like Structure[J]. Construction & Building Materials, 2018, 169: 851-858.

[19]

Wei P, Cai J, Zhang L. High-strength and Tough Crystalline Polysaccharide-based Materials[J]. Chinese Journal of Chemistry, 2020, 38(7): 761-771.

[20]

Wang C, Ge X, Jiang Y. Synergistic Effect of Graphene Oxide/Montmorillonite-sodium Carboxymethycellulose Ternary Mimic-nacre Nanocomposites Prepared Via a Facile Evaporation and Hot-pressing Technique[J]. Carbohydrate Polymers, 2019, 222: 115 026.

[21]

Shao G, Hanaor DAH, Shen X, Gurlo A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures-A Review of Novel Materials, Methods, and Applications[J]. Advanced Materials, 2020, 32(17): 1 907 176

[22]

Zhang B, Wang Q, Zhang Y, Gao W, Hou Y, Zhang G. A Self-assembled, Nacre-mimetic, Nano-laminar Structure as a Superior Charge Dissipation Coating on Insulators for HVDC Gas-insulated Systems[J]. Nanoscale, 2019, 11(39): 18 046-18 051.

[23]

Ji D, Kim J. Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets[J]. ACS Nano, 2019, 13(3): 2 773-2 785.

[24]

Tengbo M, Yongsheng Z, Kunpeng R, Xirui L, Junliang Z, Yongqiang G, Xutong Y, Jie K, Junwei G. Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-Mimetic Layered Structures[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1 677-1 686.

[25]

Robles E, Salaberria AM, Herrera R, Fernandes SCM, Labidi J. Self-bonded Composite Films Based on Cellulose Nanofibers and Chitin Nanocrystals as Antifungal Materials[J]. Carbohydrate Polymers, 2016, 144: 41-49.

[26]

Hamley IW. Liquid Crystal Phase Formation by Biopolymers[J]. Soft Matter, 2010, 6(9): 1 863-1 871.

[27]

Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R. Preparation and Characterization of α-chitin Whisker-reinforced Chitosan Nanocomposite Films with or Without Heat Treatment[J]. Polymer, 2005, 62(2): 130-136.

[28]

Fan Y, Saito T, Isogai A. Chitin Nanocrystals Prepared by TEMPO-mediated Oxidation of Alpha-chitin[J]. Biomacromolecules, 2008, 9(1): 192-198.

[29]

Chen CC, Wang DGQQ. Properties of Polymethyl Methacrylate-based Nanocomposites: Reinforced with Ultra-long Chitin Nanofiber Extracted from Crab Shells[J]. Mater. Design, 2014, 56: 1 049-1 056.

[30]

Deng Q, Li J, Yang J, Li D. Optical and Flexible α-chitin Nanofibers Reinforced Poly(Vinyl Alcohol) (PVA) Composite Film: Fabrication and Property[J]. Composites Part A Applied Science & Manufacturing, 2014, 67: 55-60.

[31]

Fernandes Susana CM, Salaberria Asier M, Diaz H, Rene Labidi Jalel. Processing of Alpha-chitin Nanofibers by Dynamic High Pressure Homogenization: Characterization and Antifungal Activity Against A. Niger[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 2015, 116: 286-291.

[32]

Kato T. Self-Assembly of Phase-Segregated Liquid Crystal Structures[J]. Science, 2002, 295: 2 414-2 418.

[33]

Hari Krishna Bisoyi Sandeep Kumar. Liquid-crystal Nanoscience: an Emerging Avenue of Soft Self-assembly[J]. Chemical Society Reviews, 2011, 40: 306-319.

[34]

Kresge CT, Leonowicz ME, Roth WJJ, Vartuli JC, Beck JS. Ordered Mesoporous Molecular Sieves Synthesized by Liquid-crystal Template Mechanism[J]. Nature, 1992, 359(6397): 710-712.

[35]

Kevin E, Shopsowitz Hamad W Y, MacLachlan M J. Chiral Nematic Mesoporous Carbon Derived From Nanocrystalline Cellulose[J]. Angewandte Chemie International Edition, 2011, 50(46): 10 991-10 995.

[36]

Urbas A, Tondiglia V, Natarajan L, Sutherland R, Bunning T. Optically Switchable Liquid Crystal Photonic Structures[J]. Journal of the American Chemical Society, 2004, 126(42): 13 580-13 581.

[37]

Castles F, Morris SM, Hung JMC, Qasim MM, Wright AD, Nosheen S, Choi SS, Outram BI, Elston SJ, Burgess C, Hill L, Wilkinson TD, Coles H J. Stretchable Liquid-crystal Blue-phase Gels[J]. Nature Materials, 2014, 13: 817-821.

[38]

Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ. Free-Standing Mesoporous Silica Films With Tunable Chiral Nematic Structures[J]. Nature, 2010, 468(7322): 422-425.

[39]

Matsumura S, Kajiyama S, Tatsuya Nishimura T, Kato T. Formation of Helically Structured Chitin/CaCO3 Hybrids Through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles[J]. Small, 2015, 11(38): 5 127-5 133.

[40]

Ehrlich H, Simon P, Motylenko M, Wysokowski Bazhenov V, Galli. Extreme Biomimetics: Formation of Zirconium Dioxide Nanophase Using Chitinous Scaffolds under Hydrothermal Conditions[J]. Journal of Materials Chemistry B, 2013, 1: 5 092-5 099.

[41]

Nguyen TD, Lizundia E, Niederberger M, Hamad WY, Maclachlan MJ. Self-Assembly Route to TiO2 and TiC with a Liquid Crystalline Order[J]. Chemistry of Materials, 2019, 31(6): 2 174-2 181.

[42]

Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R. An Overview of Chitin or Chitosan/Nano Ceramic Composite Scaffolds for Bone Tissue Engineering[J]. International Journal of Biological Macromolecules, 2016, 93(PtB): 1 338-1 353.

[43]

Denry I, Kelly J R. State of the Art of Zirconia for Dental Applications[J]. Dental Materials Official Publication of the Academy of Dental Materials, 2008, 24(3): 299-307.

[44]

A C P, B G M. Zirconia as a Ceramic Biomaterial[J]. Biomaterials, 1999, 20(1): 1-25.

[45]

Denry IL, Holloway JA. Microstructural and Crystallographic Surface Changes After Grinding Zirconia-based Dental Ceramics[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 76b(2): 440-448.

[46]

Kosma T, Oblak E, Marion L. The Effects of Dental Grinding and Sandblasting on Aging and Fatigue Behavior of Dental Zirconia (Y-TZP) Ceramics[J]. Journal of the European Ceramic Society, 2008, 28(5): 1 085-1 090.

[47]

Pittayachawan P, Mcdonald A, Petrie A, Knowles JC. The Biaxial Flexural Strength and Fatigue Property of Lava™ Y-TZP Dental Ceramic[J]. Dental Materials Official Publication of the Academy of Dental Materials, 2007, 23(8): 1 018-1 029.

[48]

Yan C, Liu R, Cao Y, Zhang C, Zhang D. Synthesis of Zirconium Carbide Powders Using Chitosan as Carbon Source[J]. Ceramics International, 2013, 39(3): 3 409-3 412.

[49]

Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D. Synthesis and Adsorption Properties of Chitosan-silica Nanocomposite Prepared by Sol-gel Method[J]. Nanoscale Research Letters, 2015, 10(1): 87

[50]

Ding C, Wang F, Li F, Su Y, Zhang D, Sha L. Preparation of Complexes of Chitosan with Zr (IV) and Catalysis Oxidizing Degradation[J]. Chinese Journal of Rare Metals, 2007, 31(2): 232-236.

[51]

Ogawa Y, Lee CM, Nishiyama Y, Kim SH. Absence of Sum Frequency Generation in Support of Orthorhombic Symmetry of α-Chitin[J]. Macromolecules, 2016, 49(18): 7 025-7 031.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/