Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage

Jianfeng Wu , Zhengyu Zhang , Xiaohong Xu , Sitong Ma , Peixian Li , Xingxing Shi

Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (4) : 743 -752.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2023, Vol. 38 ›› Issue (4) : 743 -752. DOI: 10.1007/s11595-023-2754-9
Advanced Materials

Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage

Author information +
History +
PDF

Abstract

Mullite thermal storage ceramics were prepared by low-cost calcined bauxite and kaolin. The phase composition, microstructure, high temperature resistance and thermophysical properties were characterized by modern testing techniques. The experimental results indicate that sample A3 (bauxite/kaolin ratio of 5:5) sintered at 1 620 °C has the optimum comprehensive properties, with bulk density of 2.83 g·cm−3 and bending strength of 155.44 MPa. After 30 thermal shocks (1 000 °C-room temperature, air cooling), the bending strength of sample A3 increases to 166.15 MPa with an enhancement rate of 6.89%, the corresponding thermal conductivity and specific heat capacity are 3.54 W°(m°K)−1 and 1.39 kJ°(kg°K)−1 at 800 °C, and the thermal storage density is 1 096 kJ°kg−1 (25–800 mullite ceramics; sintering properties; high-temperature thermal storage; thermal shock resistance). Mullite forms a dense and continuous interlaced network microstructure. which endows the samples high thermal storage density and high bending strength, but the decrease of bauxite/kaolin ratio leads to the decrease of mullite content, which reduces the properties of the samples.

Keywords

mullite ceramics / sintering properties / high-temperature thermal storage / thermal shock resistance

Cite this article

Download citation ▾
Jianfeng Wu, Zhengyu Zhang, Xiaohong Xu, Sitong Ma, Peixian Li, Xingxing Shi. Preparation and Thermal Shock Resistance of Mullite Ceramics for High Temperature Solar Thermal Storage. Journal of Wuhan University of Technology Materials Science Edition, 2023, 38(4): 743-752 DOI:10.1007/s11595-023-2754-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khan MI, Asfand F, Al-ghamdi SG. Progress in Research and Technological Advancements of Commercial Concentrated Solar Thermal Power Plants[J]. Solar Energy, 2023, 249: 183-226.

[2]

Zhang H, Baeyens J, Caceres G, et al. Thermal Energy Storage: Recent Developments and Practical Aspects[J]. Progress in Energy & Combustion Science, 2016, 53: 1-40.

[3]

Guney MS, Tepe Y. Classification and Assessment of Energy Storage Systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1 187-1 197.

[4]

Olivkar PR, Katekar VP, Dedhmukh SS, et al. Effect of Sensible Heat Storage Materials on the Thermal Performance of Solar Air Heaters: State-of-the-art Review[J]. Renewable & Sustainable Energy Reviews, 2022, 157: 1 364-0 321.

[5]

Chang L, Zhang G, Tan H, et al. Summary of Key Performance and Testing Methods for Thermal Storage Materials[J]. Earth and Environmental Science, 2020, 474: 52-76.

[6]

Fukanori R, Nomura T, Zhu C, et al. Macro-encapsulation of Metallic Phase Change Material Using Cylindrical-type Ceramic Containers for High-temperature Thermal Energy Storage[J]. Applied Energy, 2016, 170(C): 324-328.

[7]

Navarro ME, Martínez M, Gil A, et al. Selection and Characterization of Recycled Materials for Sensible Thermal Energy Storage[J]. Solar Energy Materials & Solar Cells, 2012, 107: 131-135.

[8]

Wu JF, Hu C, Xu XH, et al. Effect of Andalusite and Zircon on the Performances of Cordierite-spodumene Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceramics International, 2016, 42(15): 17 858-17 865.

[9]

Xu XH, Song J, Wu JF, et al. Preparation and Thermal Shock Resistance of Mullite and Corundum Co-bonded SiC Ceramics for Solar Thermal Storage[J]. Journal of Wuhan University of Technology-Mater, 2020, 35(1): 16-25.

[10]

Xu XH, Zhang QK, Wu JF, et al. Preparation and Characterization of Corundum Ceramics Doped with Fe2O3 and TiO2 for High Temperature Thermal Storage[J]. Ceramics International, 2022, 48(2): 1 820-1 826.

[11]

Zhu L, Li S, Gao Z, et al. Effect of in situ Formed Acicular Mullite Whiskers on Thermal Shock Resistance of Alumina-mullite Refractories[J]. Journal of the Australian Ceramic Society, 2023, 59(1): 259-266.

[12]

Xu XH, Ma XH, Wu JF, et al. In-situ Preparation and Thermal Shock Behavior of Corundum-mullite-magnesium Aluminate Spinel Composite Ceramic(Article)[J]. Journal of the Chinese Ceramic Society, 2012, 40(10): 1387-1393.

[13]

Xu XH, Xu XY, Wu JF, et al. Effect of Sm2O3 on Microstructure, Thermal Shock Resistance and Thermal Conductivity of Cordierite-mullite-corundum Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceramics International, 2016, 42(12): 13 525-13 534.

[14]

Xu XH, Li JW, Wu JF, et al. Preparation and Thermal Shock Resistance of Corundum-mullite Composite Ceramics from Andalusite [J]. Ceramics International, 2017, 43(2): 1 762-1 767.

[15]

Li X, Chen S, Ding H, et al. Preparation and Characterization of Corundum-mullite-spinel Refractories from Low-grade Bauxite and Magnesite ores[J]. Journal of the Ceramic Society of Japan, 2016, 124(1): 88-91.

[16]

Cheng HF, Liu QF, Yang J, et al. The Thermal Behavior of Kaolinite Intercalation Complexes-A Review[J]. Thermochimica Acta, 2012, 545: 1-13.

[17]

Maldhure AV, Tripathi HS, Ghosh A. Mechanical Properties of Mullite-Corundum Composites Prepared from Bauxite[J]. International Journal of Applied Ceramic Technology, 2015, 12(4): 860-866.

[18]

Mahnicka L. Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics[J]. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2012, 6(3): 194-199.

[19]

Tang W, Liu K, Li L, et al. Influence of Pre-firing Temperature of Andalusite Aggregates on Thermal Shock Resistance of Mullite-corundum Refractories(Article)[J]. Naihuo Cailiao/Refractories, 2019, 53(1): 11-15.

[20]

Li T, Su G. High Temperature Mechanical Properties of Mullite - corundum Sintering Materials[J]. Refractory Materials, 1989, 2: 3-9.

[21]

Kashcheev ID, Bayandina MA, Bayandina TV. Mullite-Corundum Material Based on High-Alumina Chamotte Grade RASC[J]. Refractories and Industrial Ceramics, 2016, 57(3): 258-261.

[22]

Jabbarzare S, Abdellahi M, Ghayour H, et al. A Study on the Synthesis and Magnetic Properties of the Cerium Ferrite Ceramic[J]. Journal of Alloys and Compounds, 2017, 694: 800-807.

[23]

Khare S, Dell’amico M, Knight C, et al. Selection of Materials for High Temperature Sensible Energy Storage[J]. Solar Energy Materials & Solar Cells, 2013, 115: 114-122.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/