Uncovering the Phase Transition of Berlinite (α-AlPO4) under High Pressure: Insights from First-principles Calculations

Neng Li , Hai Hu , Fei Guo , Haizheng Tao

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 248 -254.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 248 -254. DOI: 10.1007/s11595-021-2402-1
Advanced Materials

Uncovering the Phase Transition of Berlinite (α-AlPO4) under High Pressure: Insights from First-principles Calculations

Author information +
History +
PDF

Abstract

We investigated the mechanism of crystalline-to-amorphous phase transition (CAPT) for amorphous berlinite (α-AlPO4) under high pressure using ab initio constant-pressure techniques. Our results show that the pressure to the change in phase transition takes place at around 20 GPa, which is inconsistent with the previous results of around 15 GPa. To confirm the feasibility of our model, the calculated X-ray powder diffraction for crystal berlinite is concordant with the standard PDF card. By assessing a full spectrum of properties including atomic structure, bonding characteristics, electron density of states and real-space pair distribution function at each pressure, we reveal the details of phase transition. Importantly, all the information from our present results elucidates that Al-O bonds play an irreplaceable role during the process of phase transition to uncover the structural and electronic properties of berlinite. Overall, our work substantiates that it is essential to utilize a wide range of changes in order to provide a comprehensive understanding on the nature of the CAPT in other inorganic oxides.

Keywords

aluminophosphate / atomic and electronic structures / phase transition / ab initio calculation

Cite this article

Download citation ▾
Neng Li, Hai Hu, Fei Guo, Haizheng Tao. Uncovering the Phase Transition of Berlinite (α-AlPO4) under High Pressure: Insights from First-principles Calculations. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(2): 248-254 DOI:10.1007/s11595-021-2402-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sankaran HS, Sharma M, Sikka SK. Pressure Induced Amorphization of AlPO4[J]. Pramana-J. Phys., 1990, 35: 177-180.

[2]

Tse JS, Klug DD. Structural Memory in Pressure-amorphized AlPO4[J]. Science, 1992, 255: 1 559-1 561.

[3]

Christie DM, Troullier N, Chelikowsky JR. Electronic and Structural Properties of α-berlinite (AlPO4)[J]. Solid State Commun., 1996, 98: 923-926.

[4]

Polian A, Grimsditch M, Philippot E. Memory Effects in Pressure Induced Amorphous AlPO4[J]. Phys. Rev. Lett., 1993, 71: 3 143.

[5]

Keskar NR, Chelikowsky JR, Wentzcovitch RM. Mechanical Instabilities in AlPO4[J]. Phys. Rev. B, 1994, 50: 9072.

[6]

Jayaraman A, Wood D Sr.. Maines RG. High-pressure Raman Study of the Vibrational Modes in AlPO4 and SiO2 (α-quartz)[J]. Phys. Rev. B., 1987, 35: 8316.

[7]

Kruger MB, Jeanloz R. Memory Glass: An Amorphous Material Formed from AlPO4[J]. Science, 1990, 249: 647-649.

[8]

Garg N, Sharma SM. A Molecular Dynamical Investigation of High-pressure Phase Transformations in Berlinite (alpha-AlPO4)[J]. J. Phys. Condens Matter, 2000, 12: 375.

[9]

Cordier P, Gratz AJ, Doukhan JC, Nellis W. Microstructures of AIPO4 Subjected to High Shock Pressures[J]. J. Phys.Chem. Miner, 1994, 21: 133-139.

[10]

Cordier P, Doukhan C, Peyronneau J. Structural Transformations of Quartz and Berlinite AlPO4 at High Pressure and Room Temperature: a Transmission Electron Microscopy Study[J]. J. Phys. Chem. Miner, 1993, 20: 176-189.

[11]

Sharma SM, Sikka SK. Pressure Induced Amorphization of Materials[J]. Prog. Mater. Sci., 1996, 40: 1-77.

[12]

Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals[J]. Phys. Rev. B., 1993, 47: 558.

[13]

Kresse G, Furthmüller J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-wave Basis Set[J]. Comput Mater. Sci., 1996, 6: 15-50.

[14]

Ching WY. Theoretical Studies of the Electronic Properties of Ceramic Materials[J]. J. Am. Ceram. Soc., 1990, 73: 3 135-3 160.

[15]

Williams Q, Jeanloz R. Static Amorphization of Anorthite at 300 K and Comparison with Diaplectic Glass[J]. Nature, 1989, 338: 413-415.

[16]

Watson GW, Parker SC. Dynamical Instabilities in α-quartz and α-berlinite: a Mechanism for Amorphization[J]. Phys. Rev. B., 1995, 52: 306.

[17]

Murli C, Sharma SM, Kulshreshtha SK, Sikka SK. High Pressure Study of Phase Transitions in a-FePO4[J]. Phys. Chem. Miner, 1997, 49: 285-291.

[18]

Li N, Ching WY. Structural, Electronic and Optical Properties of a Large Random Network Model of Amorphous SiO2 Glass[J]. J. Non-Cryst. Solids, 2014, 383: 28-32.

[19]

Li N, Sakidja R, Aryal S, Ching WY. Densification of a Continuous Random Network Model of Amorphous SiO2 Glass[J]. Phys. Chem. Chem. Phys., 2014, 16: 1 500-1 514.

[20]

Adhikari P, Xiong M, Li N, Zhao X, Rulis P, Ching WY. Structure and Electronic Properties of a Continuous Random Network Model of An Amorphous Zeolitic Imidazolate Framework (a-ZIF)[J]. J. Phys. Chem. C., 2016, 120: 15 362-15 368.

[21]

Baral K, Li A, Ching WY. Ab initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses[J]. J. Phys. Chem. A., 2017, 121: 7 697-7 708.

[22]

Baral K, Ching WY. Electronic Structures and Physical Properties of Na2O Doped Silicate Glass[J]. J. Appl. Phys., 2017, 121: 245103.

[23]

Roux S L, Petkov V. ISAACS-interactive Structure Analysis of Amorphous and Crystalline Systems[J]. J. Appl. Cryst., 2010, 43: 181-185.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/