Densification and Structure Evolution of ZrB2-ZrO2 Composites Prepared by Plasma Activated Sintering using ZrB2@ZrO2 Powder

Haitao Yang , Jian Zhang , Junguo Li , Qiang Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 215 -222.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 215 -222. DOI: 10.1007/s11595-021-2397-7
Advanced Materials

Densification and Structure Evolution of ZrB2-ZrO2 Composites Prepared by Plasma Activated Sintering using ZrB2@ZrO2 Powder

Author information +
History +
PDF

Abstract

The densification and the structure evolution of the plasma activated sintered (PAS sintered) ZrB2-ZrO2 composite via the ZrO2-coated ZrB2 powder (ZrB2@ZrO2) prepared by in situ passivation method were investigated. The composition and microstructure were characterized by XRD, Raman, SEM, and EDS techniques. The coated powder has excellent sintering performance. The relative density of the composite reaches above 90% at 1 200 °C, and the main sintering process occurs between ZrO2 particles. While at above 1 500 °C, the relative density reaches above 95% and the main sintering process occurs between ZrB2 and ZrO2 particles. With the increase of ZrO2 coating content, the structure of the sintered body changes from ZrB2 continuous network structure to island structure. When the content is 20%, an island structure is formed. Increasing the ZrO2 content further causes the overheating of ZrO2. Thus, the best sintering performance reaches when the coating content is 20wt%.

Keywords

ZrB2 / ZrO2 / coating content / densification / structure evolution

Cite this article

Download citation ▾
Haitao Yang, Jian Zhang, Junguo Li, Qiang Shen. Densification and Structure Evolution of ZrB2-ZrO2 Composites Prepared by Plasma Activated Sintering using ZrB2@ZrO2 Powder. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(2): 215-222 DOI:10.1007/s11595-021-2397-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fahrenholtz WG, Hilmas GE, Talmy IG, et al. Refractory Diborides of Zirconium and Hafnium[J]. J. Am. Ceram. Soc., 2007, 90: 1 347-1 364.

[2]

Guo Q, da Silva CVJ, Bourgeois BB, et al. Influence of In-situ Synthesized Zr-Al-C on Microstructure and Toughening of ZrB2-SiC Composite Ceramics Fabricated by Spark Plasma Sintering[J]. Ceram. Int., 2017, 43: 13 047-13 054.

[3]

Yuan HP, Li JG, Shen Q, et al. Preparation and Microstructure of Porous ZrB2 Ceramics using Reactive Spark Plasma Sintering Method[J]. J. Wuhan. Univ. Technol., 2015, 30: 512-515.

[4]

Zhang H, Yan YJ, Huang ZR, et al. Properties of ZrB2-SiC Ceramics by Pressureless Sintering[J]. J. Am. Ceram. Soc., 2009, 92: 1 599-1 602.

[5]

Shugart K, Liu S, Craven F, et al. Determination of Retained B2O3 Content in ZrB2-30vol% SiC Oxide Scales[J]. J. Am. Ceram. Soc., 2015, 98: 287-295.

[6]

Thimmappa SK, Golla BR, Prasad VB, et al. Phase Stability, Hardness and Oxidation Behaviour of Spark Plasma Sintered ZrB2-SiC-Si3N4 Composites[J]. Ceram. Int., 2019, 45: 9 061-9 073.

[7]

Monteverde F, Bellosi A. Effect of the Addition of Silicon Nitride on Sintering Behaviour and Microstructure of Zirconium Diboride[J]. Scripta Mater, 2002, 46: 223-228.

[8]

Wu WW, Zhang GJ, Kan YM, et al. Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-temperature Ceramics at 1 800 °C[J]. J. Am. Ceram. Soc., 2006, 89: 2 967-2 969.

[9]

Vafa NP, Nayebi B, Asl MS, et al. Reactive Hot Pressing of ZrB2-based Composites with Changes in ZrO2/SiC Ratio and Sintering Conditions. Part II: Mechanical Behavior[J]. Ceram. Int., 2016, 42: 2 724-2 733.

[10]

Zamora V, Ortiz AL, Guiberteau F, et al. In situ Formation of ZrB2-ZrO2 Ultra-high-temperature Ceramic Composites from High-energy Ball-milled ZrB2 Powders[J]. J. Alloy. Comp., 2012, 518: 38-43.

[11]

Zhu T, Li W, Zhang X, et al. Damage Tolerance and R-curve Behavior of ZrB2-ZrO2 Composites[J]. Mat. Sci. Eng. A-Struct., 2009, 516: 297-301.

[12]

Song J, Li JG, Shen Q, et al. Thermal Shock and Oxidation Resistances of ZrB2-ZrO2 Ceramics[J]. J. Chin. Silicate. Soc., 2008, 36: 663-667.

[13]

Li WJ, Zhang XH, Hong CQ, et al. Preparation, Microstructure and Mechanical Properties of ZrB2-ZrO2 Ceramics[J]. J. Eur. Ceram. Soc., 2009, 29: 779-786.

[14]

Ang C, Seeber A, Williams T, et al. SPS Densification and Microstructure of ZrB2 Composites Derived from Sol-Gel ZrC Coating[J]. J. Eur. Ceram. Soc., 2014, 34: 2 875-2 883.

[15]

Guo QL, Luo SJ, Gan JZ, et al. Effect of Ball Milled Zr/Al/ZrB2 Composite Powders on Microstructure and Toughening of ZrB2-SiC/Zr-Al-C Composite Ceramics Sintered by Spark Plasma Sintering[J]. Mat. Sci. Eng. A-Struct., 2015, 644: 96-104.

[16]

Song JR, Shen QA, Li JG, et al. Preparation and Characterization of the Coated ZrB2@ZrO2 Ceramic[J]. Adv. Mater. Res., 2009, 66: 226-229.

[17]

Yang H, Zhang J, Li J, et al. In-situ Passivation Reaction for Synthesis of a Uniform ZrO2-coated ZrB2 Powder in Alkaline Hydrothermal Solution[J]. Surf. Coat. Technol., 2020, 385: 125 385.

[18]

Tatarko P, Grasso S, Chlup Z, et al. Toughening Effect of Multi-Walled Boron Nitride Nanotubes and Their Influence on the Sintering Behaviour of 3Y-TZP Zirconia Ceramics[J]. J. Eur. Ceram. Soc., 2014, 34: 1 829-1 843.

[19]

Li MJ, Feng ZC, Ying PL, et al. Phase Transformation in the Surface Region of Zirconia and Doped Zirconia Detected by UV Raman Spectroscopy[J]. Phys. Chem. Chem. Phys., 2003, 5: 5 326-5 332.

[20]

Wang D, Liang K, Wan J. Carbon-containg Zirconia Ceramics[J]. J. Chin. Ceram. Soc., 1998, 26: 233-239.

[21]

Boutz MMR, Winnubst AJA, Hartgers F, et al. Effect of Additives on Densification and Deformation of Tetragonal Zirconia[J]. J. Mater. Sci., 1994, 29: 5 374-5 382.

[22]

Chen F, Jin D, Tyeb K, et al. Field Assisted Sintering of Graphene Reinforced Zirconia Ceramics[J]. Ceram. Int., 2015, 41: 6 113-6 116.

[23]

Monteverde F, Guicciardi S, Bellosi A. Advances in Microstructure and Mechanical Properties of Zirconium Diboride based Ceramics[J]. Mat. Sci. Eng. A-Struct., 2003, 346: 310-319.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/