Solidification Behavior of in situ TiB2/Cu Composite Powders during Reactive Gas Atomization

Yihui Jiang , Mingshu Zhang , Yufa Li , Jiangtan He , Fei Cao , Shuhua Liang

Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 203 -208.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2021, Vol. 36 ›› Issue (2) : 203 -208. DOI: 10.1007/s11595-021-2395-9
Advanced Materials

Solidification Behavior of in situ TiB2/Cu Composite Powders during Reactive Gas Atomization

Author information +
History +
PDF

Abstract

2wt% TiB2/Cu composite powders were fabricated in situ by reactive gas atomization. The fabricated composite powder exhibits high sphericity, and the powder sizes range from 5 µm to 150 µm. The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size. The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34 µm and 14 µm, respectively. Compared with pure Cu droplets, the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation. With decreasing powder size, the extent of the TiB2 particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.

Keywords

composite powder / reactive gas atomization / solidification / microstructure evolution

Cite this article

Download citation ▾
Yihui Jiang, Mingshu Zhang, Yufa Li, Jiangtan He, Fei Cao, Shuhua Liang. Solidification Behavior of in situ TiB2/Cu Composite Powders during Reactive Gas Atomization. Journal of Wuhan University of Technology Materials Science Edition, 2021, 36(2): 203-208 DOI:10.1007/s11595-021-2395-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dadbakhsh S, Hao L. Effect of Al Alloys on Selective Laser Melting Behaviour and Microstructure of in situ Formed Particle Reinforced Composites[J]. J. Alloys Compd., 2012, 541: 328-334.

[2]

Hong C, Gu D, Dai D, et al. Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 based composite Parts: Tailored Microstructures and Enhanced Performance[J]. Mater. Sci. Eng. A, 2015, 635: 118-128.

[3]

Zhang LC, Attar H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review[J]. Adv. Eng. Mater., 2015, 18: 463-475.

[4]

Li XP, Ji G, Chen Z, et al. Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility[J]. Acta Mater., 2017, 129: 183-193.

[5]

Chen G, Zhou Q, Zhao SY, et al. A Pore Morphological Study of Gas-atomized Ti-6Al-4V Powders by Scanning Electron Microscopy and Synchrotron X-ray Computed Tomography[J]. Powder Technol., 2018, 330: 425-430.

[6]

Woo DJ, Sneed B, Peerally F, et al. Synthesis of Nanodiamond-reinforced Aluminum Metal Composite Powders and Coatings using High-energy Ball Milling and Cold Spray[J]. Carbon, 2013, 63: 404-415.

[7]

Arai S, Endo M. Carbon Nanofiber-copper Composite Powder Prepared by Electrodeposition[J]. Electrochem. Commun., 2003, 5: 797-799.

[8]

Eslamian M, Rak J, Ashgriz N. Preparation of Aluminum/Silicon Carbide Metal Matrix Composites using Centrifugal Atomization[J]. Powder Technol., 2008, 184: 11-20.

[9]

Li X, Sander S, Ellendt N, et al. Coupled Simulation of Spray Process for Metal Matrix Composite Powder Production[C]. In: Proc. of 25th ILASS-Europe, 2013, 1–12

[10]

Chen M, Li X, Ji G, et al. Novel Composite Powders With Uniform TiB2 Nano-particle Distribution for 3D Printing[J]. Appl. Sci., 2017, 7: 250.

[11]

Heidloff AJ, Rieken JR, Anderson IE, et al. Advanced Gas Atomization Processing for Ti and Ti Alloy Powder Manufacturing[J]. JOM, 2010, 62: 35-41.

[12]

Lee ES, Ahn S. Solidification Progress and Heat Transfer Analysis of Gas-atomized Alloy Droplets during Spray Forming[J]. Acta Metall. Mater., 1994, 42: 3 231-3 243.

[13]

Perepezko JH, Sebright JL, Höckel PG, et al. Undercooling and Solidification of Atomized Liquid Droplets[J]. Mater. Sci. Eng. A, 2002, 326: 144-153.

[14]

Tourret D, Reinhart G, Gandin CA, et al. Gas Atomization of Al-Ni Powders: Solidification Modeling and Neutron Diffraction Analysis[J]. Acta Mater., 2011, 59: 6 658-6 669.

[15]

Heringer R, Gandin CA, Lesoult G, et al. Atomized Droplet Solidification as an Equiaxed Growth Model[J]. Acta Mater., 2006, 54: 4 427-4 440.

[16]

Behulova M, Moravcik R, Kusy M, et al. Influence of Atomisation on Solidification Microstructures in the Rapidly Solidified Powder of the Cr-Mo-V Tool Steel[J]. Mater. Sci. Eng. A, 2001, 304–306: 540-543.

[17]

Behúlová M, Mesárošová J, Grgač P. Analysis of The Influence of the Gas Velocity, Particle Size and Nucleation Temperature on the Thermal History and Microstructure Development in the Tool Steel during Atomization[J]. J. Alloys Compd., 2014, 615S: S217-S223.

[18]

Braszczyński J, Zyska A. Analysis of the Influence of Ceramic Particles on the Solidification Process of Metal Matrix Composites[J]. Mater. Sci. Eng. A, 2000, 278: 195-203.

[19]

Dong H, Chen YZ, Wang K, et al. In situ Observation of Remelting Induced Anomalous Eutectic Structure Formation in an Undercooled Ni-18.7at% Sn Eutectic Alloy[J]. Scr. Mater., 2020, 177: 123-127.

[20]

Kusý M, Behúlová M, Grgač P. Influence of the Thermal History of a Particle During Atomization on the Morphology of Carbides in a Hypereutectic Iron based Alloy[J]. J. Alloys Compd., 2012, 536S: S541-S545.

[21]

Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer[M], 1996 4th ed. New York: John Wiley & Sons.

[22]

Sang L, Xu Y, Fang P, et al. The Influence of Cooling Rate on the Microstructure and Phase Fraction of Gas Atomized NiAl3 Alloy Powders during Rapid Solidification[J]. Vacuum, 2018, 157: 354-360.

[23]

Pryds NH, Pedersen AS. Rapid Solidification of Martensitic Stainless Steel Atomized Droplets[J]. Metall. Mater. Trans. A, 2002, 33: 3 755-3 761.

[24]

Tiedje N, Hansen PN, Pedersen AS. Modeling of Primary and Secondary Dendrites in a Cu-6 Wt Pct Sn Alloy[J]. Metall. Mater. Trans. A, 1996, 27: 4 085-4 093.

[25]

Mullins WW, Sekerka RF. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy[J]. J. Appl. Phys., 1964, 35: 444-451.

[26]

Sekhar JA, Trivedi R. Solidification Microstructure Evolution in the Presence of Inert Particles[J]. Mater. Sci. Eng. A, 1991, 147: 9-21.

[27]

Stefanescu DM, Dhindaw BK, Kacar SA, et al. Behavior of Ceramic Particles at the Solid-liquid Metal Interface in Metal Matrix Composites[J]. Metall. Trans. A, 1998, 19: 2 847-2 855.

[28]

Youssef YM, Dashwood RJ, Lee PD. Effect of Clustering on Particle Pushing and Solidification Behavior in TiB2 Reinforced Aluminium PMMCs[J]. Composites Part A, 2005, 36: 747-763.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/