Multi-stage Electrostatic Separation for Recovering of Aluminum from Fine Granules of Black Dross

Yunxiao Cao , Zhiqiang Wang , Jinjun Wang , Guofeng Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (4) : 925 -931.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (4) : 925 -931. DOI: 10.1007/s11595-019-2139-2
Metallic Materials

Multi-stage Electrostatic Separation for Recovering of Aluminum from Fine Granules of Black Dross

Author information +
History +
PDF

Abstract

Separation of aluminum from fine granules of black dross, which is a waste by-product in secondary aluminum production, was investigated. The separation was performed by a multi-stage electrostatic separation method. There are three stages to complete the separation, including preliminary separation, pulse charging enhancement and secondary concentration. Chemical and mineralogical compositions of collection products were analyzed and determined by X-ray diffraction (XRD) and X-ray Fluorescence (XRF). After multistage electrostatic separation, the Al2O3 content of the collection products increases from 50.74% to 69.77%. The mineralogical phase analysis indicates that the final recovery of metallic aluminum phase increases from 8% to 37%, and the aluminum oxide phase increases from 20% to 26%. The research results show the multi-stage electrostatic separation method is effective for recovering of aluminum from fine granules of black dross, and upgrades the black dross to a recoverable material.

Keywords

electrostatic separation / pulse charging / aluminum recovery / fine granules / black dross

Cite this article

Download citation ▾
Yunxiao Cao, Zhiqiang Wang, Jinjun Wang, Guofeng Li. Multi-stage Electrostatic Separation for Recovering of Aluminum from Fine Granules of Black Dross. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(4): 925-931 DOI:10.1007/s11595-019-2139-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hwang JY, Huang X, Xu Z. Recovery of Metals from Aluminum Dross and Saltcake[J]. J. Miner. Mater. Charact. Eng., 2006, 5(1): 47-62.

[2]

Shinzato MC, Hypolito R. Solid Waste from Aluminum Recycling Process: Characterization and Reuse of its Economically Valuable Constituents[J]. Waste Manag., 2005, 25(1): 37-46.

[3]

Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S. Aluminium Recovery during Black Dross Hydrothermal Treatment[J]. J. Environ. Chem. Eng., 2013, 1(1): 23-32.

[4]

Tsakiridis PE. Aluminium Salt Slag Characterization and Utilization–A review[J]. J. Hazard. Mater., 2012, 217: 1-10.

[5]

Mah K, Toguri JM, Smith HW. Electrostatic Separation of Aluminum from Dross[J]. Conserv. Recycl., 1986, 9(4): 325-334.

[6]

El-Katatny EA, Halawy SA, Mohamed MA, et al. Surface Composition, Charge and Texture of Active Alumina Powders Recovered from Aluminum Dross Tailings Chemical Waste[J]. Powder Technol., 2003, 132(2-3): 137-144.

[7]

Bruckard WJ, Walta P, Woodcock JT. The recovery of Aluminium Metal from Primary and Secondary Aluminium Drosses by Wet Grinding and Screening[C], 2005 San Francisco: Light Metals. 1203-1208.

[8]

Drouet MG, Meunier J, Lafamme CB. Dross Treatment in a Rotary Arc Furnace with Graphite Electrodes[J]. J. Metal., 1994, 46(5): 26-27.

[9]

Ünlü N, Drouet MG. Comparison of Salt-free Aluminum Dross Treatment Processes[J]. Resour. Conserv. Recycl., 2002, 36(1): 61-72.

[10]

Bruckard WJ, Woodcock JT. Characterisation and Treatment of Australian Salt Cakes by Aqueous Leaching[J]. Miner. Eng., 2007, 20(15): 1376-1390.

[11]

Dash B, Das BR, Tripathy BC, et al. Acid Dissolution of Alumina from Waste Aluminium Dross[J]. Hydrometallurgy, 2008, 92(1): 48-53.

[12]

Soto H, Toguri JM. Aluminum Recovery from Dross by Flotation[J]. Conserv. Recycl., 1986, 9(1): 45-54.

[13]

Bruckard WJ, Woodcock JT. Recovery of Valuable Materials from Aluminium Salt Cake[J]. Int. J. Miner. Process, 2009, 93(1): 1-5.

[14]

Huang T, Lei S, Liu M, et al. Dry Separation of Iron Minerals from Low-grade Coal-series Kaolin[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2015, 30(5): 935-940.

[15]

Younes A, Younes M, Sayah H, et al. Effect of Spark Discharges on the Trajectories of Insulating Particles in Roll-type Corona-electrostatic Separators. Experimental and Numerical Study[J]. J. Electrost., 2013, 71(1): 84-91.

[16]

Chen J, Honaker R. Dry Separation on Coal-silica Mixture Using Rotary Triboelectrostatic Separator[J]. Fuel Process Technol., 2015, 131: 317-324.

[17]

Dizdar TO, Kocausta G, Gülcan E, et al. A New Method to Produce High Voltage Static Electric Load for Electrostatic Separation–Tri-boelectric Charging[J]. Powder Technol., 2017, 327: 89-95.

[18]

Kelly EG, Spottiswood DJ. The Theory of Electrostatic Separations: A Review Part I. Fundamentals[J]. Miner. Eng., 1989, 2(1): 33-46.

[19]

Li J, Lu H, Xu Z, et al. Critical Rotational Speed Model of the Rotating Roll Electrode in Corona Electrostatic Separation for Recycling Waste Printed Circuit Boards[J]. J. Hazard. Mater., 2008, 154(1): 331-336.

[20]

Reguig A, Bendaoud A, Dordizadeh P, et al. Experimental Study of a Modifed Dual-type High-voltage Electrode for Electrostatic Separation Applications[J]. J. Electrost., 2017, 88: 232-235.

[21]

White HJ. Particle Charging in Electrostatic Precipitation[J]. Trans. Am. Inst. Eletr. Eng., 1951, 70: 1186-1191.

[22]

Mermigkas AC, Timoshkin IV, MacGregor SJ, et al. Impulsive Corona Discharges for Fine Particles Precipitation in a Coaxial Topology[J]. IEEE Trans. Plasma Sci., 2014, 42(10): 3 089-3 094.

[23]

Masuda S, Hosokawa S, Tachibana N, et al. Fundamental Behavior of Direct-coupled Submicrosecond Pulse Energization in Electrostatic Precipitators[J]. IEEE Trans. Ind. Appl., 1987, 1: 120-126.

[24]

Grass N, Hartmann W, Romheld M. Microsecond Pulsed Power Supply for Electrostatic Precipitators[C]. IEEE Industry Applications Conference, Thirty-Sixth IAS Annual Meeting, Chicago, 2001 2 520-2 524.

[25]

Luo Z, Chen H, Wang T, et al. Agglomeration and Capture of Fine Particles in the Coupling Effect of Pulsed Corona Discharge and Acoustic Wave Enhanced by Spray Droplets[J]. Powder Technol., 2017, 312: 21-28.

[26]

Fitch RA, Drummond JE. Enhanced Charging of Fine Particles by Electrons in Pulse-energised Electrical Precipitators[J]. IEE Proceed. A-Physical Sci. Meas. Instrum. Manag. Edu.-Rev., 1987, 134(1): 37-44.

[27]

O’Hara DB, Clements JS, Finney WC, et al. Aerosol Particle Charging by Free Electrons[J]. J. Aerosol Sci., 1989, 20(3): 313-330.

[28]

Agar GE. Calculation of Locked Cycle Flotation Test Results[J]. Miner. Eng., 2000, 13(14-15): 1 533-1 542.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/