Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1−yMg yO3 Films

Wenbo Zhang , Hua Wang , Jiwen Xu , Guobao Liu , Hang Xie , Ling Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (4) : 888 -892.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (4) : 888 -892. DOI: 10.1007/s11595-019-2133-8
Cementitious Materials

Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1−yMg yO3 Films

Author information +
History +
PDF

Abstract

SrTi1−yMg yO3 films were synthesized through sol-gel method on p +-Si substrates. The effects of Mg doping concentration on the microstructure, switching behavior and properties of SrTi1−yMg yO3 films were investigated. All SrTi1−yMg yO3 films are polycrystalline, but the grain becomes coarser, and the number of holes is reduced when the Mg doping content increases from 0.04 to 0.16. SrTi1−yMg yO3 films with different Mg doping concentrations all show bipolar resistive switching behaviors but display some differences in switching properties. When y = 0.08, the SrTi1−yMg yO3 films show the largest R HRS/R LRS of 105 and better fatigue endurance after 103 cycles. When y ⩾ 0.08, the distribution of V set and V reset is narrow, indicating good stability of writing and erasing data for a resistive random access memory. At high-resistance state, the dominant conduction mechanism of SrTi1−yMg yO3 films is the Schottky emission mechanism. However, at low-resistance state, the dominant conduction mechanisms are the filamentary conduction and changes to space charge limited current when y = 0.16.

Keywords

resistive switching films / SrTi1−yMg yO3 / doping concentration / sol-gel

Cite this article

Download citation ▾
Wenbo Zhang, Hua Wang, Jiwen Xu, Guobao Liu, Hang Xie, Ling Yang. Effects of Mg Doping Concentration on Resistive Switching Behavior and Properties of SrTi1−yMg yO3 Films. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(4): 888-892 DOI:10.1007/s11595-019-2133-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pan F, Gao S, Chen C, et al. Recent Progress in Resistive Random Access Memories: Materials, Switching Mechanisms, and Performance[J]. Mater. Sci. Eng. R-Rep., 2014, 83(1): 1-59.

[2]

Linn E, Rosezin R, Kügeler C, et al. Complementary Resistive Switches for Passive Nanocrossbar Memories[J]. Nature Mater., 2010, 9(5): 403-406.

[3]

Wei C, Wang H, Xu J, et al. Resistive Switching Behavior of Ag/Mg0.2Zn0.8O/ZnMn2O4/p+-Si Heterostructure Devices for Nonvolatile Memory Applications[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2017, 32(1): 29-32.

[4]

Yan ZB, Guo YY, Zhang GQ, et al. High-performance Programmable Memory Devices Based on Co-doped BaTiO3[J]. Adv. Mater., 2011, 23: 1 351-1 355.

[5]

Sun BC, Wang H, Xu JW, et al. Effect of Annealing Temperature on Resistance Switching and Dielectric Characteristics of Bi4Ti3O12 Thin Films[J]. Microelectron. Eng., 2014, 113: 1-4.

[6]

Lee MJ, Chang BL, Lee D, et al. A Fast, High-endurance and Scalable Non-volatile Memory Device Made from Asymmetric Ta2O5-x/TaO2-x Bilayer Structures[J]. Nature Mater., 2011, 10(8): 625-630.

[7]

Torrezan AC, Strachan JP, Medeirosribeiro G, et al. Sub-nanosecond Switching of A Tantalum Oxide Memristor[J]. Nanotechnology, 2011, 22(48): 485203-485209.

[8]

He Y, Dai P, Xu J, et al. Synthesis and Resistive Switching Characteristics of Ethyl Methacrylate /N,N′-4,4′-Diphenylmethane-bismaleimide Copolymer[J]. Adv. Mater. Res., 2013, 788: 159-163.

[9]

Karczewski J, Riegel B, Gazda M, et al. Electrical and Structural Properties of Nb-doped SrTiO3 Ceramics[J]. J. Electroceramics, 2010, 24: 326-330.

[10]

Hashimoto S, Poulsen FW, Mogensen M. Conductivity of SrTiO3 Based Oxides in the Reducing Atmosphere at High Temperature[J]. J. Alloys Compd., 2007, 439(1–2): 232-236.

[11]

Fu QX, Mi SB, Wessel E, et al. Infuence of Sintering Conditions on Microstructure and Electrical Conductivity of Yttrium-substituted SrTiO3[J]. J. Eur. Ceram. Soc., 2008, 28(4): 811-820.

[12]

Tang MH, Wang ZP, Li JC, et al. Bipolar and Unipolar Resistive Switching Behaviors of Sol-gel-derived SrTiO3 Thin Films with Different Compliance Currents[J]. J. Semicond. Sci. Technol., 2011, 26: 075019-1-4.

[13]

Meijer GI, Staub U, Janousch M, et al. Valence States of Cr and the Insulator-to-metal Transition in Cr-doped SrTiO3[J]. Phys. Rev. B, 2005, 72: 155102-1-5.

[14]

Xie YW, Sun JR, Wang DJ, et al. Reversible Electroresistance at the Ag/La0.67Sr0.33MnO3Ag/La0.67Sr0.33MnO3 Interface[J]. J. Appl. Phys., 2006, 100(3): 033704-1-3.

[15]

Yang YC, Pan F, Liu Q, et al. Fully Room-temperature-fabricated Nonvolatile Resistive Memory for Ultrafast and High-density Memory Application[J]. Nano Lett., 2009, 9(4): 1636-1643.

[16]

Luo JM, Lin SP, Zheng Y, et al. Nonpolar Resistive Switching in Mn-doped BiFeO3 Thin Films by Chemical Solution Deposition[J]. Appl. Phys. Lett., 2012, 101(6): 062902-1-3.

[17]

Li S, Wei XH, Zeng HZ. Electric-feld Induced Transition of Resistive Switching Behaviors in BaTiO3/Co:BaTiO3/BaTiO3 Trilayers[J]. Appl. Phys. Lett., 2013, 103(13): 133505-1-3.

[18]

Liu DQ, Wang NN, Wang G, et al. Nonvolatile Bipolar Resistive Switching in Amorphous Sr-doped LaMnO3 Thin Films Deposited by Radio Frequency Magnetron Sputtering[J]. Appl. Phys. Lett., 2013, 102(13): 134105-1-3.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/