Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption

Yijun Lin , Jiafu Yin , Xuechao Li , Chunyue Pan , Guichao Kuang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 440 -445.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 440 -445. DOI: 10.1007/s11595-019-2071-5
Organic Materials

Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption

Author information +
History +
PDF

Abstract

Luminescent porous materials have shown various applications such as electronic devices, gas adsorption, energy materials and photocatalysis. Consequently, we designed and prepared a new type borondipyrromethene (BODIPY) based porous organic polymer (POP) by using Sonogashira coupling reaction. This POP-1 exhibits high thermal stability with moderate surface area. In addition, POP-1 is highly emissive in a solid state. Due to enrichment of different kinds of heteroatoms in the skeleton of the porous polymer, POP-1 selectively captures carbon dioxide (CO2) with relative high adsorption selectivity of CO2/N2.

Keywords

porous organic polymer / luminescent / boron-dipyrromethene(BODIPY) / CO2 adsorption / selectively capture

Cite this article

Download citation ▾
Yijun Lin, Jiafu Yin, Xuechao Li, Chunyue Pan, Guichao Kuang. Luminescent BODIPY-based Porous Organic Polymer for CO2 Adsorption. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 440-445 DOI:10.1007/s11595-019-2071-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a Zhang YG, Riduan SN. Functional Porous Organic Polymers for Heterogeneous Catalysis[J]. Chem. Soc. Rev., 2012, 41(6): 2 083-2 094.

[2]

Sun Q, Dai ZF, Meng XJ, et al. Porous Polymer Catalysts with Hierarchical Structures[J]. Chem. Soc. Rev., 2015, 44(17): 6 018-6 034.

[3]

a Bae YSQ, Snurr R. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11 586-11 596.

[4]

Dawson R, Stöckel E, Holst JR, et al. Microporous Organic Polymers for Carbon Dioxide Capture[J]. Ener. Environ. Sci., 2011, 4(10): 4 239-4 245.

[5]

Rabbani MG, El–Kaderi HM. Synthesis and Characterization of Porous Benzimidazole Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake[J]. Chem. Mater., 2012, 24(8): 1 511-1 517.

[6]

Jiang MY, Wang Q, Chen Q, et al. Preparation and Gas Uptake of Microporous Organic Polymers based on Binaphthalene Containing Spirocyclic tetraether[J]. Polymer, 2013 952-2 957.

[7]

a Zhao YC, Wang T, Zhang LM, et al. Microporous Spiro–centered Poly(benzimidazole) Net Works: Preparation, Characterization and Gas Sorption Properties[J]. Polym. Chem., 2015, 6(5): 748-753.

[8]

Zhu Y, Long H, Zhang W. Imine–linked Porous Polymer Frameworks with High Small Gas (H2, CO2, CH4, C2H2) Uptake and CO2/N2Selectivity[ J]. Chem. Mater., 2013 630-1 635.

[9]

Wang T, Zhao YC, Luo M, et al. Facile One Pot Synthesis of Glycoluril–based Porous Organic Polymers[J]. Polymer, 2015, 60: 26-31.

[10]

a Zhang Y, Shen X, Feng X, et al. Covalent Organic Frameworks as pH Responsive Signaling Scaffolds[J]. Chem. Commun., 2016 088-11 091.

[11]

Qiu F, Zhao W, Han S, et al. Recent Advances in Boron Cotaining Conjugated Porous Polymer[J]. Polymers, 2016, 8(5): 1-21.

[12]

a Yan Z, Yuan Y, Tian Y, et al. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites[J]. Angew. Chem. Int. Ed., 2015, 54(43): 12 733-12 737.

[13]

Li A, Lu RF, Wang Y, et al. Lithium Doped Conjugated Microporous Polymers for Reversible Hydrogen Storage [J]. Angew. Chem. Int. Ed., 2010, 49(19): 3330-3.

[14]

a Jiang JX, Su F, Niu H, et al. Conjugated Microporous Poly (phenylene butadiynylene) [J]. Chem. Commun., 2008, 8(4): 486-488.

[15]

Cheng G, Hasell T, Trewin A, et al. Soluble Conjugated Microporous Polymers[J]. Angew. Chem. Int. Ed., 2012, 51(51): 12 727-12 731.

[16]

Chen Q, Luo M, Wang T, et al. Porous Organic Polymers Based on Propeller–Like Hexaphenylbenzene Building Units[J]. Macromolecules, 2011, 44(14): 5 573-5 577.

[17]

a Liu X, Xu Y, Jiang D. Conjugated Microporous Polymers as Molecular Sensing Devices: Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence on and Fluorescence off Sensing[J]. J. Am. Chem. Soc., 2012, 134(21): 738-8 741.

[18]

Novotney JL, Dichtel WR. Conjugated Porous Polymers for TNT Vapor Detection[J]. ACS. Macro. Lett., 2013, 2(5): 423-426.

[19]

Gopalakrishnan D, Dichtel WR. Direct Detection of RDX Vapor Using a Conjugated Polymer Network[J]. J. Am. Chem. Soc., 2013, 135(22): 357-8 362.

[20]

Tan H, Liu B, Chen Y. Lanthanide Coordination Polymer Nanoparticles for Sensing of Mercury (II) by Photo Induced Electron Transfer[J]. ACS. Nano., 2012, 6(12): 10 505-10 511.

[21]

Gu C, Huang N, Wu Y, et al. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity[ J]. Angew. Chem. Int. Ed., 2015, 54(39): 11 540-11 544.

[22]

Xu Y, Chen L, Guo Z, et al. Light Emitting Conjugated Polymers with Microporous Network Architecture: Interweaving Scaffold Promotes Electronic Conjugation, Facilitates Exciton Migration, and Improves Luminescence[J]. J. Am. Chem. Soc., 2011, 133(44): 622-17 625.

[23]

a Totten RK, Kim YS, Weston MH, et al. Enhanced Catalytic Activity Through the Tuning of Micropore Environment and Supercritical CO2Processing: Al (Porphyrin)–Based Porous Organic Polymers for the Degradation of a Nerve Agent Simulant[J]. J. Am. Chem. Soc., 2013, 135(32): 11 720-11 723.

[24]

Zhang K, Farha OK, Hupp JT, et al. Complete Double Epoxidation of Divinylbenzene Using Mn(porphyrin)–Based Porous Organic Polymers[J]. ACS. Catal., 2015, 5(8): 4 859-4 866.

[25]

Spitler EL, Dichtel WR. Lewis Acid Catalysed Formation of Two Dimensional Phthalocyanine Covalent Organic Frameworks[J]. Nat. Chem., 2010, 2(8): 672-677.

[26]

Dalapati S, Jin E, Addicoat M, et al. Highly Emissive Covalent Organic Frameworks[J]. J. Am. Chem. Soc., 2016, 138(18): 5 797-5 800.

[27]

Lin G, Cao D. Color Tunable Porous Organic Polymer Luminescent Probes for Selective Sensing of Metal Ions and Nitro Aromatic Explosives[ J]. J. Mater. Chem. C, 2015, 3(33): 8 490-8 494.

[28]

Bonillo B, Sprick RS, Cooper AI. Tuning Photophysical Properties in Conjugated Microporous Polymers by Comonomer Doping Strategies[ J]. Chem. Mater., 2016, 28(10): 3 469-3 480.

[29]

Liao Y, Weber J, Faul CFJ. Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO2Selective Carbon Materials[ J]. Macromolecules, 2015, 48(7): 2 064-2 073.

[30]

Tobin JM, Liu J, Hayes H, et al. BODIPY–based Conjugated Microporous Polymers as Reusable Heterogeneous Photosensitisers in a Photochemical Flow Reactor[J]. Polym. Chem., 2016 662-6 670.

[31]

Zhuang XD, Gehrig D, Forler N, et al. Conjugated Microporous Polymers with Dimensionality Controlled Heterostructures for Green Energy Devices[J]. Adv. Mater., 2015, 27(25): 3 789-3 796.

[32]

Liras M, Iglesias M, Sánchez F. Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light Emitting Materials and Recyclable Visible Light Photocatalysts[J]. Macromolecules, 2016, 49(5): 1 666-1 673.

[33]

Yogo T, Urano Y, Ishitsuka Y, et al. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore[J]. J. Am. Chem. Soc., 2005, 127(35): 12 162-12 163.

[34]

a Baruah M, Qin W, Vallée RA, et al. Highly Potassium Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light[J]. Org. Lett., 2005, 7(20): 4 377-4 380.

[35]

Thivierge C, Bandichhor AR, Burgess K. Spectral Dispersion and Water Solubilization of (BODIPY) Dyes via Palladium Catalyzed C–H Functionalization[J]. Org. Lett., 2007, 9(11): 2 135-2 138.

[36]

Jiao L, Pang W, Zhou J, et al. Regioselective Stepwise Bromination of Boron Dipyrromethene (BODIPY) Dyes[J]. J. Org. Chem., 2011, 76(24): 9 988-9 996.

[37]

a Wang DG, Li Q, Zhu YL, et al. BODIPY–Based Porous Organic Polymers: How the Monomeric Methyl Substituents and Isomerization Affect the Porosity and Singlet Oxygen Generation[J]. Macromol. Chem. Phys., 2017

[38]

Wang DG, Song F, Tang H J, et al. A Facile Route by Using FeCl3 to Prepare Dimeric BODIPY Based Porous Organic Polymers[J]. New J. Chem, 2017

[39]

Basak D, Christensen S, Surampudi SK, et al. Proton Conduction in Discoticmesogens[J]. Chem. Commun., 2011, 47(19): 5 566-5 568.

[40]

Deniz E, Battal M, Cusido J, et al. Insights into Theisomerization of Photochromic Oxazines from Theexcitation Dynamics of BODIPY–oxazine Dyes[J]. Phys. Chem. Chem. Phys., 2012, 14(14): 10 300-10 307.

[41]

Jiang JX, Su F, Trewin A, et al. Conjugated Microporous Poly(aryleneethynylene) Networks[J]. Angew. Chem. Int. Ed., 2007, 46(45): 8 574-8 578.

[42]

Patel HA, Je SH, Park J, et al. Unprecedented High Temperature CO2 Selectivity in N2 Phobic Nanoporous Covalent Organic Polymers[J]. Nat. Commun., 2013, 4(1): 1 357-1 360.

[43]

Sunahara H, Urano Y, Kojima AH, et al. Designand Synthesis of a Library of BODIPY Based Environmental Polarity Sensors Utilizing Photoinduced Electron–Transfer–Controlled Fluorescence ON/OFF Switching[J]. J. Am. Chem. Soc., 2007, 129(17): 5 597-5 604.

[44]

Rabbani MG, Elkaderi HM. Template Free Synthesis of a Highly Porous Benzimidazole Linked Polymer for CO2 Capture and H2 Storage[ J]. Chem. Mater., 2011, 23(7): 1 650-1 653.

[45]

Yuan R, Ren H, Yan Z, et al. Robusttri(4–ethynylphenyl)amine Based Porousaromatic Frameworks for Carbon Dioxide Capture[J]. Polym. Chem., 2014, 5(7): 2 266-2 272.

[46]

a Zhao W, Zhuang X, Wu D, et al. Boron–p–nitrogen–Based Conjugated Porous Polymers with Multifunctions[J]. J. Mater. Chem. A, 2013, 1(44): 13878-13884.

[47]

Saleh M, Baek SB, Han ML, et al. Triazine Based Microporous Polymers for Selective Adsorption of CO2[J]. J. Am. Chem. Soc., 2015, 119(10): 5 395-5 399.

[48]

a Zhang C, Zhu PC, Tan L, et al. Triptycene Based Hyper Crosslinked Polymer Sponge for Gas Storage and Water Treatment[J]. Macromolecules, 2015, 48(23): 8 509-8 514.

[49]

Arab P, Parrish E, İslamoğ l, et al. Synthesis and Evaluation of Porous Azo–linked Polymers for Carbon Dioxide Capture and Separation, [J]. J. Mater. Chem. A, 2015, 3(41): 20 586-20 594.

[50]

a Jiang X, Zhao W, Wang W, et al. One Potapproach to Pd Loaded Porous Polymers with Properties Tunable by the Oxidation State of the Phosphorus Core[J]. Polym. Chem., 2015 351-6 357.

[51]

Li G, Zhang B, Wang Z. Facile Synthesis of Fluorinated Microporous Polyaminals for Adsorption of Carbon Dioxide and Selectivities over Nitrogen and Methane[J]. Macromolecules, 2016, 49(7): 2 575-2 581.

[52]

a Ji G, Yang Z, Zhang H, et al. Hierarchically Mesoporous o–Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO2 Capture and Conversion[J]. Angew. Chem. Int. Ed., 2016, 55(33): 9 685-9 689.

[53]

Ding X, Han BH. Copper Phthalocyanine Based CMPs with Various Internal Structures and Functionalities[J]. Chem. Commun., 2015, 51(64): 12 783-12 786.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/