Mechanical Properties of Reactive Powder Concretes Produced Using Pumice Powder

Abdurrezzak Bakis , Ercan Isik , Alev Akıllı El , Mustafa Ülker

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 353 -360.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 353 -360. DOI: 10.1007/s11595-019-2059-1
Cementitious Materials

Mechanical Properties of Reactive Powder Concretes Produced Using Pumice Powder

Author information +
History +
PDF

Abstract

We examined the applicability of the pumice aggregate on the concrete formed by considering the reactive powder concrete mixture ratios, for the rigid superstructure concrete road pavement and building construction. The natural pumice aggregate in fibrous and non-fibrous concrete samples was used in the production of concrete by fracturing in 0.1-0.6 mm dimensions in rotor mill. The concreted formed in this way is named after the pumice powder concrete (PPC). The PPC samples produced were taken 7 days as 20 °C standard water cure, 28 days as 20 °C standard cure and 9 different types of combined cures. The combined cures were applied different temperatures in different durations. PPC samples were subjected to some pressure and flexural tests at the end of the standard water and combined cures. The highest compressive and flexural strengths of PPC samples were obtained after the combined cures: 3 days in 20 °C as standard water curing + 2 days in 180 °C in drying-oven. The highest compressive strength of PPC samples without any fiber was found to be 47.27 MPa, as for the highest flexural strength, it is found to be 5.23 MPa, in the end of the study. The highest compressive strength of fibrous PPC samples was 51.12 MPa, while flexural strength was 6.57 MPa.

Keywords

reactive powder concrete (RPC) / pumice powder concrete (PPC) / combined cure / compressive strength / flexural strength

Cite this article

Download citation ▾
Abdurrezzak Bakis, Ercan Isik, Alev Akıllı El, Mustafa Ülker. Mechanical Properties of Reactive Powder Concretes Produced Using Pumice Powder. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 353-360 DOI:10.1007/s11595-019-2059-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akın G, Akın M. Pomzanın Özellikleri, Kullanım Alanları ve Üretiminde Yaşanan Sorunlar[C]. II. Uluslararası Ahlat–Avrasya Bilim, Kültür ve Sanat Sempozyumu.Turkey, 2013

[2]

Dinçer İ., Orhan A., Çoban S. Pomza Araştırma ve Uygulama Merkezi Fizibilite Raporu[R], 2015

[3]

Elmastas N. Türkiye Ekonomisi icin Önemi Giderek Artan Bir Maden: Pomza (Sünger Tası)[J]. J. Int. Soc. Res., 2012, 5(23): 197-206.

[4]

Kurt M, Gül MS, Gül R, et al. The Effect of Pumice Powder on the Self–Compactability of Pumice Aggregate Lightweight Concrete [J]. Constr. Build. Mater., 2016, 103: 36-46.

[5]

Karaipekli A, Sarı A. Development and Thermal Performance of Pumice/Organic PCM/Gypsum Composite Plasters for Thermal Energy Storage in Buildings[J]. Sol. Energ. Mat. Sol. C., 2016, 149: 19-28.

[6]

Ramesan MT, George A, Jayakrishnan P, et al. Role of Pumice Particles in the Thermal, Electrical and Mechanical Properties of Poly (Vinyl Alcohol)/Poly (Vinyl Pyrrolidone) Composites[J]. J. Therm. Anal.Calorim., 2016, 126(2): 511-519.

[7]

Gurbuz F, Ceylan S, Odabaşı M, et al. Hepatotoxic Microcystin Removal Using Pumice Embedded Monolithic Composite Cryogel as an Alternative Water Treatment Method[J]. Water Res., 2016, 90: 337-343.

[8]

Yuan L, Shen J, Chen Z, et al. Role of Fe/Pumice Composition and Structure in Promoting Ozonation Reactions[J]. Appl. Catal. B–Environ., 2016, 180: 707-714.

[9]

Simmons JM, Cas RAF, Druitt TH, et al. The Initiation and Development of a Caldera–Forming Plinian Eruption (172ka Lower Pumice 2 Eruption, 2017

[10]

Ardalan RB, Joshaghani A, Hooton RD. Workability Retention and Compressive Strength of Self–compacting Concrete Incorporating Pumice Powder and Silica Fume[J]. Constr. Build. Mater., 2017, 134: 116-122.

[11]

De Luna MDG, Doliente LMT, Ido AL, et al. In Situ Transesterification of Chlorella sp. Microalgae Using LiOH–Pumice Catalyst[J]. J. Environ. Chem. Eng., 2017, 5(3): 2 830-2 835.

[12]

Derakhshan Z, Ehrampoush MH, Mahvi AH, et al. Evaluation of Volcanic Pumice Stone as Media in Fixed Bed Sequence Batch Reactor for Atrazine Removal from Aquatic Environments[J]. Water Sci. Technol., 2016, 74(11): 2 569-2 581.

[13]

Dehghani MH, Faraji M, Mohammadi A, et al. Optimization of Fluoride Adsorption onto Natural and Modified Pumice Using Response Surface Methodology: Isotherm, Kinetic and Thermodynamic Studies [J]. Korean J. Chem. Eng., 2017, 34(2): 454-462.

[14]

Türkmen Bingöl AF, Tortum A, et al. Properties of Pumice Aggregate Concretes at Elevated Temperatures and Comparison with ANN Models[J]. Fire Mater., 2017 142-153.

[15]

Fauria KE, Manga M, Wei Z. Trapped Bubbles Keep Pumice Afloat and Gas Diffusion Makes Pumice Sink[J]. Earth Planet. Sc. Lett., 2017, 460: 50-59.

[16]

Gao G, Shen J, Chu W, et al. Mechanism of Enhanced Diclofenac Mineralization by Catalytic Ozonation over Iron Silicate–Loaded Pumice [J]. Sep. Purif. Technol., 2017, 173: 55-62.

[17]

Seraj S, Cano R, Ferron RD, et al. The Role of Particle Size on the Performance of Pumice as a Supplementary Cementitious Material[J]. Cement Concrete Comp., 2017, 80: 135-142.

[18]

Karataş M, Benli A, Ergin A. Influence of Ground Pumice Powder on the Mechanical Properties and Durability of Self–Compacting Mortars [J]. Constr. Build. Mater., 2017, 150: 467-479.

[19]

Isik E, Kutanis M. Performance Based Assessment for Existing Residential Buildings in Lake Van Basin and Seismicity of the Region[J]. Earthq. Struct., 2015, 9(4): 893-910.

[20]

Işık E, Kutanis M, Bal E. Loss Estimation and Seismic Risk Assessment in Eastern Turkey[J]. Građevinar, 2017, 69(07): 581-592.

[21]

http: //www.mta.gov.tr (Access date: 28.05.2017)

[22]

Varol OO. Bitlis ve Van İllerinde Pomza Madenciliğine Genel bir Bakıs[J]. Sci. Min. J., 2016, 55(3): 27-34.

[23]

Karaman ME, Kibici Y. Temel Jeoloji Prensipleri[B]Belen Yayıncılık ve Matbaacılık, 2008 Ankara: Belen Yayıncılık ve Matbaacılık.

[24]

Heibati B, Yetilmezsoy K, Zazouli MA, et al. Adsorption of Ethidium Bromide (EtBr) from Aqueous Solutions by Natural Pumice and Aluminium–Coated Pumice[J]. J. Mol. Liq., 2016, 213: 41-47.

[25]

Bakış A. Rijit Yol Üstyapı İnşasında Reaktif Pudra Betonun (RPB) Kullanılabilirliğinin Araştırılması[D]. Doktora Tezi, 2015 Fen Bilimleri Enstitüsü: Erzurum: Atatürk Üniversitesi.

[26]

Abid M, Hou X, Zheng W, et al. High Temperature and Residual Properties of Reactive Powder Concrete–A Review[J]. Constr. Build. Mater., 2017, 147: 339-351.

[27]

Han B, Wang Z, Zeng S, et al. Properties and Modification Mechanisms of Nano–Zirconia Filled Reactive Powder Concrete[J]. Constr. Build. Mater., 2017, 141: 426-434.

[28]

Shi C, Long M, Cao C, et al. Mechanical Property Test and Analytical Method for Reactive Powder Concrete Columns under Eccentric Compression[ J]. KSCE J. Civil Eng., 2017, 21(4): 1 307-1 318.

[29]

Wu Z, Shi C, He W. Comparative Study on Flexural Properties of Ultra–high Performance Concrete with Supplementary Cementitious Materials under Different Curing Regimes[J]. Constr. Build. Mater., 2017, 136: 307-313.

[30]

Gökce HS, Sürmelioğlu S, Andic–Cakir. A New Approach for Production of Reactive Powder Concrete: Lightweight Reactive Powder Concrete (LRPC)[J]. Mater. Struct., 2017, 50(1): 58

[31]

Mo J, Ou Z, Zhao X, Liu J, et al. Influence of Superabsorbent Polymer on Shrinkage Properties of Reactive Powder Concrete Blended with Granulated Blast Furnace Slag[J]. Constr. Build. Mater., 2017, 146: 283-296.

[32]

Hiremath PN, Yaragal SC. Influence of Mixing Method, Speed and Duration on the Fresh and Hardened Properties of Reactive Powder Concrete[J]. Constr. Build. Mater., 2017, 141: 271-288.

[33]

Ji T, Yang Y, Fu MY, et al. Optimum Design of Reactive Powder Concrete Mixture Proportion Based on Artificial Neural and Harmony Search Algorithm[J]. ACI Mater. J., 2017, 114(1): 41-47.

[34]

He Y, Mao R, L, et al. Hydration Products of Cement–Silica Fume–Quartz Powder Mixture under Different Curing Regimes[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32(3): 598-602.

[35]

Liu J, Song S, Wang L. Durability and Micro–Structure of Reactive Powder Concrete[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2009, 24(3): 506-509.

[36]

İpek M. Reaktif Pudra Betonların Mekanik Davranışına Katılaşma Süresince Uygulanan Sıkıştırma Basıncının Etkileri[D], 2009 Doktora Tezi, Sakarya: Sakarya Üniversitesi Fen Bilimleri Enstitüsü.

[37]

Helmi M, Hall MR, Stevens LA, et al. Effects of High–Pressure/Temperature Curing on Reactive Powder Concrete Microstructure Formation[ J]. Constr. Build. Mater., 2016, 105: 554-562.

[38]

Na–Hyun Y, Jang–Ho JK, Tong–Seok H, et al. Blast–Resistant Characteristics of Ultra–High Strength Concrete and Reactive Powder Concrete[ J]. Constr. Build. Mater., 2012, 28(1): 694-707.

[39]

Liu J, Wu C, Li J, et al. Experimental and Numerical Study of Reactive Powder Concrete Reinforced with Steel Wire Mesh Against Projectile Penetration [J]. Int. J. Impact Eng., 2017, 109: 131-149.

[40]

Peng Y, Hu S, Ding Q. Preparation of Reactive Powder Concrete Using Fly Ash And Steel Slag Powder[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2010, 25(2): 349-354.

[41]

Jiao C, Sun W. Impact Resistance of Reactive Powder Concrete[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2015, 30(4): 752-757.

[42]

An M, Yu Z, Sun M, et al. Fatigue properties of RPC under Cyclic Loads of Single–stage and Multi–level Amplitude[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2010, 25(1): 167-173.

[43]

Tam CM, Tam VW, Ng KM. Assessing Drying Shrinkage and Water Permeability of Reactive Powder Concrete Produced in Hong Kong [J]. Constr. Build. Mater., 2012, 26(1): 79-89.

[44]

Yalçınkaya Yazıcı H. Agrega Hacminin Reaktif Pudra Betonunun Mekanik ve Büzülme Özelliklerine Etkileri[C], 2011 Turkey: THBB Beton Kongresi.

[45]

Wang Y, An MZ, Yu ZR, et al. Durability of Reactive Powder Concrete under Chloride–Salt Freeze–Thaw Cycling[J]. Mater. Struct., 2017, 50(1): 18

[46]

Shao X, Pan R, Zhan H, et al. Experimental Verification of the Feasibility of a Novel Prestressed Reactive Powder Concrete Box–Girder Bridge Structure[J]. J. Bridge Eng., 2017, 22(6): 04017015

[47]

Zdeb T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Constr. Build. Mater., 2017, 131: 758-766.

[48]

Altoubat SA, Roesler JR, Lange DA, et al. Simplified Method for Concrete Pavement Design with Discrete Structural Fibers[J]. Constr. Build. Mater., 2008, 22(3): 384-393.

[49]

Dong S, Han B, Ou J, et al. Electrically Conductive Behaviors and Mechanisms of Short–Cut Super–Fine Stainless Wire Reinforced Reactive Powder Concrete[J]. Cement Concrete Comp., 2016, 72: 48-65.

[50]

Hattatoglu F, Bakis A. Usability of Ignimbrite Powder in Reactive Powder Concrete Road Pavement[J]. Road Mater. Pavement, 2017, 18(6): 1 448-1 459.

[51]

Martínez–Barrera G, Gencel O, Reis J, et al. Novel Technologies and Applications for Construction Materials 2016[J]. Adv. Mater. Sci. Eng., 2017

[52]

Ji T, Chen CY, Zhuang YZ. Evaluation Method for Cracking Resistant Behavior of Reactive Powder Concrete[J]. Constr. Build. Mater., 2012, 28(1): 45-49.

[53]

Wang DH, Ju YZ, Zheng WZ. Strength of Reactive Powder Concrete Beam–Column Joints Reinforced with High–Strength (HRB600) Bars Under Seismic Loading[J]. Strength Mater., 2017, 49(1): 139-151.

[54]

Luo H, Wang W, Shen L, et al. Stress–Strain Model for Reactive Powder Concrete Confined by Steel Tube[J]. J. Eng. Sci. Technol. Rev., 2017, 10(2): 122-131.

[55]

Zheng W, Luo B, Wang Y. Compressive and Tensile Properties of Reactive Powder Concrete with Steel Fibres at Elevated Temperatures [J]. Constr. Build. Mater., 2013, 41: 844-851.

[56]

Tohumcu Bingöl AF. Silis Dumanı ve Uçucu Kül Katkılı Kendiliğinden Yerleşen Betonların Taze Beton Özellikleri ve Basınç Dayanımları [J]. DEU. Eng. Fac. J. Sci. Eng., 2013, 15(2): 31-44.

[57]

Deng Z, Daud JR, Gao L. Flexural Toughness Performance of Hybrid Fiber–Reinforced RPC[J]. J. Braz. Soc. Mech. Sci. Eng., 2017, 39(1): 279-288.

[58]

Yazıcı H, Yiğiter H, Karabulut A, et al. Utilization of Fly Ashand Ground Granulated Blast Furnace Slag as an Alternative Silica Source in Reactive Powder Concrete[J]. Fuel, 2008, 87: 2 401-2 407.

[59]

Ünsal A, Şen H. Beton Kaplama Blokları–Beton Parkeler–Gerekli Şartlar ve Deney Metotları (TS 2824 EN1338),T.C Ulaştırma Bakanlığı Karayolları Genel Müdürlüğü, 2008 Teknik Araştırma Dairesi Başkanlığı, Malzeme Lab. Şubesi Müdürlüğü, Ankara: Beton ve Beton Malzemeleri Laboratuvar Deneyleri.

[60]

Macit S. Beton Yol İnşaatında Kendiliğinden Yerleşen Betonun Kullanılması Üzerine Bir Araştırma[D]. Doktora Tezi, 2009 Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü: Trabzon.

[61]

Tunç A. Yol Malzemeleri ve Uygulamaları [B], 2007

[62]

www.cimsa.com.tr (Access date: 26.05.2017)

[63]

Efe T. Edremit Travertenleri ve Van Gölü Kuzeyinde Yüzeylenen Pomzaların Çimento Sektöründe Kullanılabilirliğinin Araştırılması [M], 2011 Yüksek Lisans Tezi, Van: Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü.

[64]

Aral M. Karma Lif İçeren Çimento Esaslı Kompozitlerin Mekanik Davranışı Bir Optimum Tasarım[M], 2006 Fen Bilimleri Enstitüsü: Yüksek Lisans Tezi, İstanbul: İTÜ.

[65]

www.iksa.com.tr (Access date: 02.01.2017)

[66]

Larrard F, Sedran T. Optimization of Ultra–High–Performance Concrete by the Use of a Packing Model[J]. Cement Concrete Res., 1994, 24(6): 997-1.

[67]

Richard P, Cheyrezy M. Composition of Reactive Powder Concretes[J]. Cement Concrete Res, 1995 501-1 511.

[68]

Taşdemir C. Combined Effects of Mineral Admixtures and Curing Conditions on the Sorptivity Coefficient of Concrete[J]. Cement Concrete Res., 2003, 33(10): 1 637-1 642.

[69]

Bakış A, Işık E, El AA, et al. A Study on the Mixture Ratio of Pumice Powder Concrete on the Concrete Pavement and the Construction of Building[J]. IOSR J. Mec. Civ. Eng., 2017, 14(3): 83-90.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/