Synthesis of Vanadium Carbide Nanopowders via Mechanical Alloying and Microwave Heating Methods

Baozhen Yang , Hongjuan Zheng , Zhiwei Zhao , Juan Zheng , Feixiao Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 332 -336.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 332 -336. DOI: 10.1007/s11595-019-2056-4
Advanced Materials

Synthesis of Vanadium Carbide Nanopowders via Mechanical Alloying and Microwave Heating Methods

Author information +
History +
PDF

Abstract

A simple and fast method of preparation of vanadium carbide (V8C7) nanopowders using mechanical alloying assisted microwave heating method was demonstrated. The micron-sized V2O5 and nano-sized carbon black were used as starting materials. The as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimetry (TG-DSC), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. The experimental results show that the V8C7 powders can be obtained by microwave heating at 1 100 °C for 1 h (34wt% C). The synthesized powders show good dispersion and are mainly composed of spherical or near-spherical particles with a mean diameter of about 30 nm. The XPS spectra show that the surface of the specimen mainly consists of V, C, and O three species elements.

Keywords

vanadium carbide / mechanical alloying / microwave heating microstructure / nanopowders

Cite this article

Download citation ▾
Baozhen Yang, Hongjuan Zheng, Zhiwei Zhao, Juan Zheng, Feixiao Chen. Synthesis of Vanadium Carbide Nanopowders via Mechanical Alloying and Microwave Heating Methods. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 332-336 DOI:10.1007/s11595-019-2056-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong L, Zhang X, Chen S, et al. Fe–W–C Thermodynamics and Insuit Reparation of Tungsten Carbide–reinforced Iron–based Surface Composites by Solid–phase Diffusion[J]. Int. J. Refract. Met. Hard Mater., 2016, 57: 42-47.

[2]

Gautam GS, Kumar KCH. Elastic, Thermochemical and Thermophysical Properties of Rock Salt–type Transition Metal Carbides and Nitrides: A First Principles Study[J]. Alloys Compd., 2014, 587(10): 380-386.

[3]

Toth LE. Transition Metal Carbides and Nitrides[M], 1971 New York: Academic Press.

[4]

Kawakami M, Kitamura K. Segregation Layers of Grain Growth Inhibitors at WC/WC Interfaces in VC–doped Submicron–grained WCCo Cemented Carbides[J]. Int. J. Refract. Met. Hard Mater., 2015, 52: 229-234.

[5]

García J, Pinto H, Ramos–Moore E, et al. In–situ High Temperature Stress Analysis of Ti(C,N) Coatings on Functionally Graded Cemented Carbides by Energy Dispersive Synchrotron X–ray Diffraction[J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 27-34.

[6]

Zhao X, Huang L, Li H, et al. Highly Dispersed VO/TiO Modified with Transition Metals (Cu, Fe, Mn, Co) as Efficient Catalysts for The Selective Reduction of NO with NH3[J]. Cata., 2015, 36(11): 1 886-1 899.

[7]

Zhang YF, Fan MJ, Ling H, et al. Fabrication of V2O3/C Core–shell Structured Composite and VC Nanobelts by The Thermal Treatment of VO2/C Composite[J]. Appl. Surf. Sci., 2012, 258: 9 650-9 655.

[8]

Chen Y, Zhang H, Ye H, et al. A Simple and Novel Route to Synthesize Nano–vanadium Carbide Using Magnesium Powders, Vanadium Pentoxide and Different Carbon Source[J]. Int. J. Refract. Met. Hard Mater., 2011, 29(4): 528-531.

[9]

Wang H, Zeng M, Liu J, et al. One–step Synthesis of Ultrafine WC–10Co Hardmetals with VC/V2O5 Addition by Plasma Assisted Milling[ J]. Int. J. Refract. Met. Hard Mater., 2015, 48(8): 97-101.

[10]

Tripathy PK, Sehra JC, Kulkarni AV. On the Carbonitrothermic Reduction of Vanadium Pentoxide[J]. Mater. Chem.A, 2001, 11(2): 691-695.

[11]

Gupta CK, Krishnamurthy N. Extractive Metallurgy of Vanadium[M], 1992

[12]

Praveen S, Basu J, Kashyap S, et al. Exceptional Resistance to Grain Growth in a Nanocrystalline Co–Cr–Fe–Ni High Entropy Alloy at High Homologous Temperatures[J]. Alloys Compd., 2015, 662: 361.

[13]

Zhang B, Li ZQ. Synthesis of Vanadium Carbide by Mechanical Alloying[ J]. Alloys Compd., 2005, 392(1–2): 183-186.

[14]

Kapoor R, Oyama ST. Synthesis of Vanadium Carbide by Temperature Programmed Reaction[J]. Solid State Chem., 1995, 120(2): 320-326.

[15]

Claridge JB, York APE, Brungs AJ, et al. Temperature–Programmed Reaction Synthesis of Early Transition Metal Carbide and Nitride Catalyst Materials from Oxide Precursors.[J]. Chem. Mater., 2000, 31(12): 132-137.

[16]

Lee JS, Locatelli S, Oyama ST, et al. Turnover Rates for The Hydrogenolysis of N–butane[J]. Cata., 1990, 125(1): 157-170.

[17]

Zhao Z, Zuo H, Liu Y, et al. Effects of Additives on Synthesis of Vanadium Carbide (VC) Nanopowders by Thermal Processing of The Precursor[J]. Int. J. Refract. Met. Hard Mater., 2009, 27(6): 971-975.

[18]

Zhao Z, Liu Y, Cao H, et al. A Novel Method to Synthesize Vanadium Carbide (V8C7) Nanopowders by Thermal Processing NH4VO3, C6H12O6 and Urea[J]. Alloys Compd., 2009, 468(1): 58-63.

[19]

Schwarzkopf P, Kieffer P. Refractory Hard Metals[M], 1953 New York: MacMillan.

[20]

Zhu M, Dai LY, Gu NS, et al. Synergism of Mechanical Milling and Dielectric Barrier Discharge Plasma on the Fabrication ofNnano–powders of Pure Metals and Tungsten Carbide[J]. Alloys Compd., 2009, 478(1): 624-629.

[21]

Huang Z, Gotoh M, Hirose Y. Improving Sinterability of Ceramics Using Hybrid Microwave Heating[J]. Mater. Proc. Technol., 2009, 209(5): 2 446-2 452.

[22]

Zhao Z, Chen F, Wang M, et al. Synthesis of Chromium Carbide Nanopowders Via a Microwave Heating Method[J]. Int. J. Refract. Met. Hard Mater., 2015, 51: 212-215.

[23]

Cheng J, Agrawal D, Zhang Y, et al. Microwave Sintering of Transparent Alumina[J]. Mater. Lett., 2002, 56(4): 587-592.

[24]

Hassan MN, Mahmoud MM, El–Fattah A A, et al. Microwave–assisted Preparation of Nano–hydroxyapatite for Bone Substitutes[J]. Ceramics Int., 2016, 42(3): 3 725-3 744.

[25]

Liu Y, Min FF, Zhu JB, et al. Effect of Nanometer Al2O3 Powder on Microstructure and Properties of Alumina Ceramics by Microwave Sintering[J]. Mater. Sci. Eng. A, 2012, 546(6): 328-330.

[26]

Li ZR, Cao ZQ, Fang MX. Study on Thermodynamic Principle of Preparation of VC by Carbon–Heat Reducing[J]. Adv. Mater. Res., 2011, 125(6): 328-330.

[27]

Mahajan M, Singh K, Pandey OP. Single Step Synthesis of Nano Vanadium Carbide–V 8C 7, phase[J]. Int. J. Refract. Met. Hard Mater., 2013, 36(1): 106-110.

[28]

Chatterjee P, Gupta SPS, Sen S. Microstructural Transformation of Vanadium Pentoxide Powder Obtained by High–energy Vibrational Ball–milling[J]. J. Appl. Crystallogr., 2001, 34(3): 381-386.

[29]

Zhao Z, Zuo H, Liu Y, et al. Effects of Additives on Synthesis of Vanadium Carbide (VC) Nanopowders by Thermal Processing of the Precursor[J]. Int. J. Refract. Met. Hard Mater., 2009, 27(6): 971-975.

[30]

Olvera JNR, Paredes GJG, Serrano AR, et al. Synthesis and Characterization of a MoWC–WC–NiC Nanocomposite Via Mechanical Alloying and Sintering[J]. Powder Technol., 2015, 27: 292-300.

[31]

Loginov PA, Levashov EA, Kurbatkina VV, et al. Evolution of the Microstructure of Cu–Fe–Co–Ni Powder Mixtures Upon Mechanical Alloying[J]. Powder Technol., 2015, 276: 166-174.

[32]

Yan L, Wu E. The Preparation of Ultrafine V 8C 7, Powder and Its Phase Reactions[J]. Int. J. Refract. Met. Hard Mater, 2007, 25: 125-127.

[33]

Matyi RJ, Schwartz LH, Butt JB. Particle Size, Particle Size Distribution, and Related Measurements of Supported Metal Catalysts[J]. Catal. Rev. Sci. Eng., 1987, 29(1): 41-99.

[34]

Meunier F, Delporte P, Heinrich B, et al. Synthesis and Characterization of High Specific Surface Area Vanadium Carbide; Application to Catalytic Oxidation[J]. J. Catal., 1997, 169(169): 33-44.

[35]

Choi JG. The Surface Properties of Vanadium Compounds by X–ray Photoelectron Spectroscopy[J]. J. Appl. Surf. Sci., 1999, 148(1–2): 64-72.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/