Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics

Hua Wang , Xia Zhai , Jiwen Xu , Ling Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 308 -311.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 308 -311. DOI: 10.1007/s11595-019-2052-8
Advanced Materials

Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics

Author information +
History +
PDF

Abstract

The 0.6mol% CuO-doping 0.996(0.95Na0.5K0.5NbO3-0.05LiSbO3)-0.004FeBiO3 (KNN-LSBF-CuO) piezoelectric ceramics were synthesized by a solid-state reaction technique, and the structure and piezoelectric properties dependence of sintering time in KNN-LS-BF-CuO ceramics were studied. It is found that all the samples sintered for various time are perovskite structure mixed with orthorhombic symmetry phase and tetragonal phase, but the sintering time has significant influences on the crystalline and properties. When the sintering time increases from 2 hours to 6 hours, the grain of KNN-LS-BF-CuO ceramics becomes more homogeneous and more tight-arrangement. The experimental results reveal that the longer sintering time than 4 hours is beneficial for improving partial properties, such as d 33, tgδ, and Q m, but is adverse to εr and k p, the KNNLS-BF-CuO ceramics with optimum properties can be synthesized for 6 hours at 1 060 °C.

Keywords

piezoelectric ceramics / KNN-LS-BF / CuO-doping / sintering time

Cite this article

Download citation ▾
Hua Wang, Xia Zhai, Jiwen Xu, Ling Yang. Effect of Sintering Time on Structure and Properties in CuO-doping KNN-LS-BF Piezoelectric Ceramics. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 308-311 DOI:10.1007/s11595-019-2052-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schreiter M, Gabl R, Pitzer D, et al. Electro–acoustic Hysteresis Behaviour of PZT Thin Film Bulk Acoustic Resonators[J]. J. Eur. Ceram. Soc., 2004, 24: 1 589-1 592.

[2]

Wang DW, Cao MS, Zhang SJ. Investigation of Ternary System Pb(Sn,Ti)O3–Pb(Mg1/3Nb2/3) O3 with Morphotropic Phase Boundary Compositions[J]. J. Eur. Ceram. Soc., 2012, 32: 441-448.

[3]

Lin Y, Zhang L, Yu J. Stable Piezoelectric Property of Modified BiFeO3–BaTiO3 Lead–free Piezoceramics[J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 8 432-8 441.

[4]

Zuo RZ, Ye C, Fang XS. Na0.5K0.5NbO3–BiFeO3 Lead–free Piezoelectric Ceramics[J]. J. Phys. Chem. Solids, 2008, 69: 230-235.

[5]

Wu L, Ning H. Preparation and Piezoelectric Properties of CuO–added (Ag0.75Li0.1Na0.1K0.05)NbO3 Lead–free Ceramics[J]. J. Wuhan Univ. Tech. Mater. Sci. Ed., 2015, 30(4): 724-728.

[6]

Tong K, Zhou C, Wang J, et al. Enhanced Piezoelectricity and Hightemperature Sensitivity of Zn–modified BF–BT Ceramics by in–situ and ex–situ Measuring[J]. Ceramics International, 2017, 43(4): 3 734-3 740.

[7]

Yang H, Zhou C, Zhou Q, et al. Lead–free (Li, Na, K)(Nb, Sb)O3 Piezoelectric Ceramics: Effect of Bi(Ni0.5Ti0.5)O3 Modification and Sintering Temperature on Microstructure and Electrical Properties[J]. J. Mater. Sci., 2013, 48(7): 2 997-3 002.

[8]

Wu JG, Xiao DQ, Wang YY, et al. Compositional Dependence of Phase Structure and Electrical Propertis in (K0.42Na0.58)NbO3–LiSbO3 Lead–free Ceramics[J]. J. Appl. Phys., 2007, 102: 114113-1.

[9]

Wongsaenmai S, Kanchiang K, Chandarak S. Crystal Structure and Ferroelectric Properties of Mn–doped ((K0.5Na0.5)0.935Li0.065)NbO3 Leadfree Ceramics[J]. Curr. Appl. Phys., 2012, 12: 418-421.

[10]

Huang T, Xiao DQ, Liang WF, et al. Sintering Behavior of KNNBNKT Lead–free Piezoelectric Ceramics[J]. Ferroelectrics, 2014, 458(1): 37-42.

[11]

Wang HQ, Ruan DS, Dai YJ, et al. Relationship between Phase Structure and Electrical Properties of (K0.5Na0.5)NbO3–LiTaO3 Leadfree Ceramics[J]. Curr. Appl.Phys., 2012, 12: 504-508.

[12]

Jin JM, Wan DD, Yang Y, et al. A Linear Ultrasonic Motor Using (K0.5Na0.5)NbO3 Based Lead–free Piezoelectric Ceramics[J]. Sensor. Actuat. A, 2011, 165: 410-414.

[13]

Yang H, Zhou C, Zhou Q, et al. Lead–free (Li, Na, K)(Nb, Sb)O3 Piezoelectric Ceramics: Effect of Bi(Ni0.5Ti0.5)O3 Modification and Sintering Temperature on Microstructure and Electrical Properties[J]. J. Mater. Sci., 2013, 48(7): 2 997-3 002.

[14]

Jiang M, Liu X, Chen G, et al. Dielectric and Piezoelectric Properties of LiSbO3 Doped 0.995 K0.5Na0.5NbO3–0.005BiFeO3 Piezoelectric Ceramics[J]. Mater. Lett., 2009, 63(15): 1 262-1 265.

[15]

Coondoo I, Panwar N, Maiwa H, et al. Improved Piezoelectric and E n e r g y H a r v e s t i n g C h a r a c t e r i s t i c s i n L e a d–f r e e F e 2O3 Modified KNN Ceramics[J]. J. Electroceramics, 2015, 34(4): 255-261.

[16]

Zhao D, Fu XH, Cheng GY, et al. The Effect of Excess Sodium Element on KNN–BF Piezoelectric Ceramics[J]. Mater. Sci. Forum, 2016, 859: 24-29.

[17]

Jin X, Fu XH, Tao WH, et al. Piezoelectric Properties Study of KNNLS Lead–free Ceramics Synthesized by Sol–gel Method[J]. Appl. Mechanics Mater., 2014, 538: 15-18.

[18]

Jiang M, Liu X, Chen G, et al. Sintering Characteristics of Lead–free K0.5Na0.5NbO3–LiSbO3–BiFeO3 Piezoelectric Ceramics[J]. J. Chin. Ceram. Soc., 2011, 39(7): 1 165-1 169.

[19]

Cheng GY, Fu XH, Tao WH, et al. Influence of Sintering Temperature on KNN–BF–LS Piezoelectric Ceramic[J]. Mater. Sci. Forum, 2016, 859: 8-12.

[20]

Wang H, Zuo R, Wang L, et al. Preparation and Piezoelectric Properties of CuO–doped (Na0.5K0.5)NbO3 Ceramics by the Citrate Precursor Method[J]. J. Mater. Sci.: Mater. Electron., 2011, 22: 458-462.

[21]

Wang H, Zhai X, Xu J, et al. Temperature Stability of V2O5–doped KNN–LS–BF Lead–free Piezoelectric Ceramics[J]. J. Electro. Mater., 2013, 48: 2 556-2 559.

[22]

Liu C, Xiao DQ, Wu JG, et al. Electrical Properties of CuO–doped (K0.5Na0.5)(Nb0.92Sb0.03Ta0.05)O3 Piezoelectric Ceramics with High Qm[J]. Ferroelectrics, 2014, 458(1): 31-36.

[23]

Zhao Y, Zhao Y, Huang R, et al. Microstructure and Piezoelectric Properties of CuO–doped 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5) O3 Lead–free Ceramics[J]. J. Eur. Ceram. Soc., 2011, 31(11): 1 939-1 944.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/