Catalyst Enhanced Chemical Vapor Deposition of Nickel on Polymer Surface

Yamian Yu , Yiqin Liu , Jun Wang , Shan Qing , Kaichao Yu

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 293 -298.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 293 -298. DOI: 10.1007/s11595-019-2049-3
Advanced Materials

Catalyst Enhanced Chemical Vapor Deposition of Nickel on Polymer Surface

Author information +
History +
PDF

Abstract

Catalyst enhanced chemical vapor deposition of nickel film on high T g polymers such as teflon (PTFE), polyimide(PI), and polysulfone(PS) was investigated by hot wall and cold wall CVD, in which Ni(dmg)2, Ni(acac)2, Ni(hfac)2, Ni(TMHD)2, and Ni(cp)2 are used as precursors, and palladium complexes are used as catalysts. The films obtained were shiny with silvery color. The Ni was metallic and the purity of Ni was about 92%-95% from XPS analysis. SEM micrographs show that the film had good morphology. The conductivity of the film was about 0.5-4 Ω·cm-1. Ni films had good adhesion with polyimide and polysulfone.

Keywords

catalyst enhanced chemical vapor deposition / teflon / polyimide(PI) / polysulfone(PS) / nickel film / palladium complex catalyst

Cite this article

Download citation ▾
Yamian Yu, Yiqin Liu, Jun Wang, Shan Qing, Kaichao Yu. Catalyst Enhanced Chemical Vapor Deposition of Nickel on Polymer Surface. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 293-298 DOI:10.1007/s11595-019-2049-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sacher E. Fluoropolymer Metallization for Microelectronic Applications[ J]. Progress in Surface Science, 1994, 47(3): 273-300.

[2]

Henry AC, McCarley RL. Selective Deposition of Metals on Plastics used in the Construction of Microanalytical Devices: Photo–Directed Formation of Metal Features on PMMA[J]. The Journal of Physical Chemistry B, 2001, 105(37): 8 755-8 761.

[3]

Soper SA, Ford SM, Qi S, et al. Peer Reviewed: Polymeric Microelectromechanical Systems[J]. Anal. Chem., 2000, 72: 642A-651A.

[4]

Mu H, Pan L, Song D, et al. Neutral Nickel Catalysts for Olefin Homo–and Copolymerization: Relationships between Catalyst Structures and Catalytic Properties[J]. Chemical Reviews, 2015, 115(22): 12 091-12 137.

[5]

Ge J, Wang K, Zhang D, et al. Nickel–coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing[J]. Journal of Wuhan University of Technology–Mater. Sci. Ed., 2015, 30(3): 601-606.

[6]

Eberhardt NA, Guan H. Nickel Hydride Complexes[J]. Chemical reviews, 2016, 116(15): 8 373-8 426.

[7]

Brown IJ, Sotiropoulos S. Electrodeposition of Ni from a High Internal Phase Emulsion (HIPE)Template[J]. Electrochimica acta, 2001, 46(17): 2 711-2 720.

[8]

Franklin TC, Mathew SA. The Effect of Anionic Additives on the Volume of Activation for the Electrodeposition of Nickel[J]. Journal of the Electrochemical Society, 1988, 135(11): 2 725-2 728.

[9]

Carlo SR, Perry C, Torres J, et al. Metallization of Poly (vinylchloride) by Fe, Ni, Cu, Ag, and Au[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(2): 350-355.

[10]

Bébin P, Prud’homme RE. X–ray Photoelectron Spectroscopy Study of Two Nitrogen–containing Polymer Surfaces Metallized by Nickel[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(5): 1 611-1 620.

[11]

Bébin P, Prud’Homme RE. X–ray Photoelectron Spectroscopy Study of Oxygen–containing Polymer[poly(vinyl methyl ether), Poly(vinyl methyl ketone), and Poly(methyl methacrylate)] Surfaces Metalized by Vacuum–Deposited Nickel[J]. J. Polymer Science Part B: Polymer Physics, 2002, 40: 82-94.

[12]

Wang T, Tu R, Ke W, et al. Morphology Study of Oriented SmBCO Film Deposited by MOCVD[J]. Journal of Wuhan University of Technology–Mater. Sci. Ed., 2016, 31(1): 15-19.

[13]

Li Z, Cheng L, Liu Y, et al. Thermodynamic Analysis of Chemical Vapor Deposition of BCl3–NH3–SiCl4–H2–Ar System[J]. Journal of Wuhan University of Technology–Mater. Sci. Ed., 2015, 30(5): 951-958.

[14]

Mittal KL. Polyimides: Synthesis, 1984 New York: Characterization, and Applications[ M]. Plenum Press.

[15]

Lemmer U, Hennig R, Guss W, et al. Microcavity Effects in a Spin–coated Polymer Two–layer System[J]. Applied physics letters, 1995, 66(11): 1 301-1 303.

[16]

Pommerehne J, Nikolaenkov DV, Nikitenko VR, et al. Overshoot Effect in Transient Electroluminescence from Single Layer Organic Light–emitting Diodes[J]. Journal of Applied Physics, 2001, 90(11): 5 554-5 560.

[17]

Martin J D, Hogan P, Abboud KA, et al. Variations on Nickel Complexes of the vic–Dioximes: An Understanding of Factors Affecting Volatility toward Improved Precursors for Metal–Organic Chemical Vapor Deposition of Nickel[J]. Chemistry of materials, 1998, 10(9): 2 525-2 532.

[18]

Brissonneau L, Vahlas C. Precursors and Operating Conditions for the Metal–organic Chemical Vapor Deposition of Nickel Films[C]//Annales de Chimie Science des Matériaux, 2000, 25(2): 81-90.

[19]

Van Hemert RL, Spendlove LB, Sievers RE. Vapor Deposition of Metals by Hydrogen Reduction of Metal Chelates[J]. Journal of the Electrochemical Society, 1965, 112(11): 1 123-1 126.

[20]

Maruyama T, Tago T. Nickel Thin Films Prepared by Chemical Vapour Deposition from Nickel Acetylacetonate[J]. Journal of Materials–Science, 1993, 28(19): 5 345-5 348.

[21]

Sugimoto K, Seto M, Tanaka S, et al. Corrosion Resistance of Artificial Passivation Films of Fe2O3–Cr2O3–NiO Formed by Metalorganic Chemical Vapor Deposition[J]. Journal of the Electrochemical Society, 1993, 140(6): 1 586-1 592.

[22]

Fraser B, Hampp A, Kaesz HD. Controlled Growth of Ni Particles on Si (100) 1a[J]. Chemistry of Materials, 1996, 8(8): 1 858-1 864.

[23]

Martin JD, Hogan P, Abboud KA, et al. Variations on Nickel Complexes of the Vic–Dioximes: An Understanding of Factors Affecting Volatility toward Improved Precursors for Metal–Organic Chemical Vapor Deposition of Nickel[J]. Chemistry of Materials, 1998, 10(9): 2 525-2 532.

[24]

Becht M, Gallus J, Hunziker M, et al. Nickel Thin Films Grown by MOCVD Using Ni (dmg)2 as Precursor[J]. Le Journal de Physique IV, 1995

[25]

Son IH, Park JH, Kwon S, et al. Self–terminated Artificial SEI Layer for Nickel–rich Layered Cathode Material via Mixed Gas Chemical Vapor Deposition[J]. Chemistry of Materials, 2015, 27(21): 7370-7379.

[26]

Zhang Y, Sam WK, Puddephatt RJ. Catalyst Enhanced Chemical Vapor Deposition: Effects on Chemical Vapor Deposition Temperature and Film Purity[J]. J. Am. Chem. Soc., 1997 295-9 296.

[27]

Rashid HU, Yu KCUmar MN, et al. Catalyst role in Chemical Vapor Deposition (CVD) Process: a review[J]. Rev. Adv. Mater. Sci, 2015, 40(3): 235-248.

[28]

Yu KC, Yousef H, Cheng YH, et al. Formation of Palladium–Platinum Alloy Films on Polyimide by Catalyst Enhanced Chemical Vapor Deposition[J]. Chin. J. Inorg. Chem., 2006, 22: 789-793.

[29]

Zheng JH, Zhou JL, Yu KC, et al. Catalyst Enhanced Chemical Vapor Deposition of Palladium–Platinum Bilayer films on polyimide[J]. Chin. J. Inorg. Chem, 2006 465-467.

[30]

Zheng JH, Zhou JL, Tian XK, et al. Catalyst Enhanced Chemical Vapor Deposition of Palladium–Platinum Bilayer Nano–Films on Polysulfone[ J], Chin. J, Cata., 2007, 28: 755-757.

[31]

Caneschi A, Gatteschi D, Laugier J, et al. Structure and Magnetic Properties of Chains of Diamonds of Four Spins Formed by Metal (II) Hexafluoroacetylacetonates (metal=cobalt, nickel) and the Nitronyl Nitroxide radical 4, 4, 5, 5–tetramethyl–2–ethyl–4, 5–dihydro–1H–imidazolyl–1–oxyl 3–oxide[J]. Inorganic Chemistry, 1988, 27(9): 1 553-1 557.

[32]

Hammond GS, Nonhebel DC, Wu CS. Chelates of β–Diketones. V. Preparation and Properties of Chelates Containing Sterieally Hindered Ligands[J]. Inorg. Chem, 1963, 2: 73-76.

[33]

Martell AE, Belford RL, Calvin M. Influence of Fluorine Substitution on the Proporties of Metal Chelate Compounts Copper () Chelates of Tetradentate Ligands[J]. J. Inorg. Nucl. Chem, 1958, 5: 170-181.

[34]

Bhaskaran V, Atanasova P, Hampden–Smith MJ, et al. Low–pressure Chemical Vapor Deposition of Cu–Pd Films: Ally Growth Kinetics[J]. Chem. Mater, 1997, 9: 822-2 829.

[35]

Zhang Y, Yuan Z, Puddephatt RJ. Allyl (b–diketononate) Palladium() Complexes, Including Liquid Precursors, for Chemical Deposition of Palladium[J]. Chem. Mater, 1998, 10: 2 293-2 300.

[36]

Meek L, Seidel TE, Cullis AG. Diffusion Gettering of Au and Cu in Silicon[J]. Journal of the Electrochemical Society, 1975, 122: 786-796.

[37]

Jackson RL. Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation[J]. J. Electrochem. Soc., 1990, 137: 95-101.

[38]

Zelenay P, Rice–Jackson LM, Wieckowski A. Radioactive Labeling Study of Sulfate/bisulfate Adsorption on Smooth Gold Electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 283: 389-401.

[39]

Klein JC, Hercules DM. Surface Characterization of Model Urushibara Catalysts[J]. Journal of Catalysis, 1983, 82: 424-441.

[40]

ESCA Handbook of X–ray Photoelectron Spectroscopy[M]. Perkin–Elmer Corp: Eden Prairie, MN, 1992

[41]

Moulder JF. Handbook of X–ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data[M], 1995 Eden Prairie, MN: Physical Electronics.

[42]

Klein JC, Hercules DM. Surface Characterization of Model Urushibara Catalysts[J]. Journal of Catalysis, 1983, 82: 424-441.

[43]

Becht M, Atamny F, Baiker A, et al. Morphology Analysis of Nickel Thin Films Grown by MOCVD[J]. Surface science, 1997, 371: 399-408.

[44]

Chou NJ, Tang CH. Interfacial Reaction during Metallization of Cured Polyimide: An XPS Study[J]. Journal of Vacuum Science & Technology A, 1984, 2: 751-755.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/