Synthesis of Cr2AlC from Elemental Powders with Modified Pressureless Spark Plasma Sintering

Mengni Ge , Xiaofan Wang , Gaiye Li , Chen Lu , Jianfeng Zhang , Rong Tu

Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 287 -292.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2019, Vol. 34 ›› Issue (2) : 287 -292. DOI: 10.1007/s11595-019-2048-4
Advanced Materials

Synthesis of Cr2AlC from Elemental Powders with Modified Pressureless Spark Plasma Sintering

Author information +
History +
PDF

Abstract

We introduced a modified pressureless sintering strategy by SPS with a new T-shape die and tapered punches, which helps the evaporation of melted Al and reduces the sample sticking with the inner wall of the die. Thus, the die breaking risk in the sintering process or the de-molding process is avoided at all. At a low temperature and short holding time, a high purity of Cr2AlC was obtained in this SPS process from the optimization of different molar ratios of raw materials. Simultaneously, the high porosity of the as-obtained sample was also a distinguishing feature worth noticing. The reaction mechanism for this process was also discussed in detail. This study presented a new venue for future development of high purity “MAX” materials and others related materials by a modified pressureless sintering strategy.

Keywords

pressureless spark plasma sintering / Cr2AlC / reaction mechanism

Cite this article

Download citation ▾
Mengni Ge, Xiaofan Wang, Gaiye Li, Chen Lu, Jianfeng Zhang, Rong Tu. Synthesis of Cr2AlC from Elemental Powders with Modified Pressureless Spark Plasma Sintering. Journal of Wuhan University of Technology Materials Science Edition, 2019, 34(2): 287-292 DOI:10.1007/s11595-019-2048-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y, Shi Z, Wang J, et al. Reactive Consolidation of Layered–Ternary Ti2AlN Ceramics by Spark Plasma Sintering of A Ti/AlN Powder Mixture[ J]. J. Eur. Ceram. Soc., 2011, 31: 863-868.

[2]

Abdulkadhim A, Takahashi T, Music D, et al. MAX Phase Formation by Intercalation upon Annealing of TiCx/Al (0.4 ≤x≤1) Bilayer Thin Films[J]. Acta Mater., 2011, 59: 6 168-6 175.

[3]

Medkour Y, Bouhemadou A, Roumili A. Structural and Electronic Properties of M2InC (M =Ti, Zr, and Hf)[J]. Solid State Commun., 2008, 148: 459-463.

[4]

Bouhemadou A. Structural, Electronic and Elastic Properties of MAX Phases M2GaN (M = Ti, V and Cr)[J]. Solid State Sci., 2009, 11: 1 875-1 881.

[5]

Li C, Wang Z, Ma D, et al. First–Principles Study of the Structural, Mechanical, Magnetic, and Electronic Properties of Cr4AlN3 under Pressure[J]. Intermetallics, 2013, 43: 71-78.

[6]

Yeh CL, Shen YG. Effects of Al Content on Formation of Ta2AlC by Self–Propagating High–Temperature Synthesis[J]. J. Alloys Compd., 2009, 482: 219-223.

[7]

Baben M, Shang L, Emmerlich J, et al. Oxygen Incorporation in M2AlC (M = Ti, V, Cr)[J]. Acta Mater., 2012, 60: 4 810-4 818.

[8]

Ramzan M, Lebegue S, Ahuja R. Correlation Effects in the Electronic and Structural Properties of Cr2AlC[J]. Phys. Status Solidi RRL, 2011, 5: 122-124.

[9]

Pang W, Low I, O’Connor B, et al. Comparison of Thermal Stability in MAX 211 and 312 Phases. Journal of Physics Conference Series, 2010

[10]

Low I, Pang W, Kennedy S, et al. High–Temperature Thermal Stability of Ti2AlN and Ti4AlN3: A Comparative Diffraction Study[J]. J. Eur. Ceram. Soc., 2011, 31: 159-166.

[11]

Pang W, Low I. Diffraction Study of Thermal Dissociation in the Ternary Ti–Al–C System[J]. J. Am. Ceram. Soc., 2009, 45: 30-33.

[12]

Pang W, Low I, Kennedy S, et al. In Situ Diffraction Study on Decomposition of Ti2AlN at 1 500–1 800 in Vacuum [J]. J. Mater. Sci. Eng. A, 2010, 528: 137-142.

[13]

Schneider J, Sun Z, Mertens R, et al. Ab Initio Calculations and Experimental Determination of the Structure of Cr2AlC[J]. Solid State Commun., 2004, 130: 445-449.

[14]

Jia G, Yang L. Ab Initio Calculations for Properties of Ti2AlN and Cr2AlC[J]. Phys. B (Amsterdam, Neth.), 2010, 405: 4 561-4 564.

[15]

Barsoum MW, Brodkin D, Elraghy T. Layered Machinable Ceramics for High Temperature Applications[J]. Scripta Materialia, 1997, 36: 535-541.

[16]

Jovic VD, Jovic BM, Gupta S, et al. Corrosion Behavior of Select MAX Phases in NaOH, HCl and H2SO4[J]. Corros. Sci., 2006, 48: 4 274-4 282.

[17]

Gonzalez–Julian J, Llorente J, Bram M, et al. Novel Cr2AlC MAXphase/SiC Fiber Composites: Synthesis, Processing and Tribological Response[J]. J. Eur. Ceram. Soc., 2017, 37: 467-475.

[18]

Pei R, Mcdonald SA, Shen L, et al. Crack Healing Behaviour of Cr2AlC MAX Phase Studied by X–ray Tomography[J]. J. Eur. Ceram. Soc., 2017, 37: 441-450.

[19]

Li S, Yu W, Zhai H, et al. Mechanical Properties of Low Temperature Synthesized Dense and Fine–Grained Cr2AlC Ceramics[J]. J. Eur. Ceram. Soc., 2011, 31: 217-224.

[20]

Tian W, Wang P, Zhang G, et al. Mechanical Properties of Cr2AlC Ceramics[ J]. J. Am. Ceram. Soc., 2007, 90: 1 663-1 666.

[21]

Tian W. Synthesis and Thermal and Electrical Properties of Bulk Cr2AlC[J]. Scripta Mater., 2006, 54: 841-846.

[22]

Tian W, Sun Z, Hashimoto H, et al. Synthesis, Microstructure and Properties of (Cr1–xVx)2AlC Solid Solutions[J]. J. Alloys Compd., 2009, 484: 130-133.

[23]

Lin Z, Li M, Wang J, et al. High–Temperature Oxidation and Hot Corrosion of Cr2AlC[J]. Acta Mater., 2007, 55: 6 182-6 191.

[24]

Tian W, Wang P, Kan Y, et al. Oxidation Behavior of Cr2AlC Ceramics at 1,100 and 1,250 degrees C[J]. J. Mater. Sci., 2008, 43: 2 785-2 791.

[25]

Li H, Li S, Zhou Y. Cyclic Thermal Shock Behaviour of a Cr2AlC Ceramic[ J]. Mater. Sci. Eng. A, 2014, 607: 525-529.

[26]

Cui S, Wei D, Hu H, et al. First–Principles Study of the Structural and Elastic Properties of Cr2AlX (X=N, C) Compounds[J]. J. Solid State Chem., 2012, 191: 147-152.

[27]

Naguib M, Kurtoglu M, Presser V, et al. Two–Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Adv. Mater., 2011, 23: 4 248-4 253.

[28]

Tian W, Wang P, Kan Y, et al. Phase Formation Sequence of Cr2AlC Ceramics Starting from Cr–Al–C Powders[J]. J. Mater. Sci. Eng. A, 2007, 443: 229-234.

[29]

Hallstedt B, Music D, Sun Z. Thermodynamic Evaluation of the Al–Cr–C System[J]. Int. J. Mater. Res., 2006, 97: 539-542.

[30]

Tian W, Vanmeensel K, Wang P, et al. Synthesis and Characterization of Cr2AlC Ceramics Prepared by Spark Plasma Sintering[J]. Mater. Lett., 2007, 61: 4 442-4 445.

[31]

Gonzalez–Julian J, Onrubia S, Bram M, et al. Effect of Sintering Method on the Microstructure of Pure Cr2AlC MAX Phase Ceramics[J]. J. Ceram. Soc. Jpn., 2016, 124: 415-420.

[32]

Duan X, Shen L, Jia D, et al. Synthesis of High–Purity, Isotropic or Textured Cr2AlC Bulk Ceramics by Spark Plasma Sintering of Pressure–Less Sintered Powders[J]. J. Eur. Ceram. Soc., 2015, 35: 1 393-1 400.

[33]

Hu C, Zhang J, Bao Y, et al. In situ Reaction Synthesis and Decomposition of Ta2AlC[J]. Int. J. Mater. Res., 2008, 99: 8-13.

[34]

Hu C, He L, Liu M, et al. In situ Reaction Synthesis and Mechanical Properties of V2AlC[J]. J. Am. Ceram. Soc., 2010, 91: 4 029-4 035.

[35]

Tian W, Sun Z, Du Y, et al. Mechanical Properties of Pulse Discharge Sintered Cr2AlC at 25–1000°C[J]. Mater. Lett., 2009, 63: 670-672.

[36]

Abdelkader A. Molten Salts Electrochemical Synthesis of Cr2AlC[J]. J. Eur. Ceram. Soc., 2016, 36: 33-42.

[37]

Liang Y, Guo C, Li C, et al. Thermodynamic Modeling of the Al–Cr System[J]. J. Alloys Compd., 2008, 460: 314-319.

[38]

Huang Q, Han H, Liu R, et al. Saturation of Ion Irradiation Effects in MAX Phase Cr2AlC[J]. Acta Mater., 2016, 110: 1-7.

[39]

Lin Z, Zhou Y, Li M. Synthesis, Microstructure, and Property of Cr2Al–C[J]. J. Mater. Sci. Technol., 2007, 23: 721-746.

[40]

Shen L, Eichner D, Zwaag SVD, et al. Reducing the Erosive Wear Rate of Cr2AlC MAX Phase Ceramic by Oxidative Healing of Local Impact Damage[J]. Wear, 2016, 358: 1-6.

[41]

Oh H, Lee S, Choi S. The Reaction Mechanism for the Low Temperature Synthesis of Cr2AlC under Electronic field[J]. J. Alloys Compd., 2014, 587: 296-302.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/