Preparation and Properties of Aqueous SCNTs Dispersion based on A UV-curable Polymeric Dispersant

Yan Yuan , Haiqiang Wu , Jingcheng Liu , Jing Luo , Ren Liu , Xiaoya Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 485 -491.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 485 -491. DOI: 10.1007/s11595-018-1849-0
Organic Materials

Preparation and Properties of Aqueous SCNTs Dispersion based on A UV-curable Polymeric Dispersant

Author information +
History +
PDF

Abstract

A novel photosensitive copolymer P(SS-co-AA-g-GMA) (PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes (SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.

Keywords

single-walled carbon nanotubes (SCNTs) / polymeric dispersant / UV-curable / conductive / water resistance

Cite this article

Download citation ▾
Yan Yuan, Haiqiang Wu, Jingcheng Liu, Jing Luo, Ren Liu, Xiaoya Liu. Preparation and Properties of Aqueous SCNTs Dispersion based on A UV-curable Polymeric Dispersant. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 485-491 DOI:10.1007/s11595-018-1849-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ijjima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354: 56-58.

[2]

Baughman RH, Zakhidov AA, Heer WD. Carbon Nanotubes-the Route toward Applications[J]. Science, 2002, 297: 787-792.

[3]

Zdenko SS, Dimitrios T, Konstantinos PP, et al. Carbon Nanotube–Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties[J]. Prog. Polym. Sci., 2010, 35: 357-401.

[4]

O’Connell MJ, Bachilo SM, Huffman CB, et al. Band Gap Fluorescence from Individual Single-walled Carbon Nanotubes[J]. Science, 2002, 297: 593-596.

[5]

O’Connell MJ, Boul P, Ericson LM, et al. Reversible Water-solubilization of Single-walled Carbon Nanotbes by Polymer Wrapping[J]. Chem. Phys. Lett., 2001, 342: 265-271.

[6]

Kim OK, Je JT, Baldwin JE, et al. Solubilization of Single-wall Carbon Nanotubes by Supramolecular Encapsulation of Helical Amylose[J]. J. Am. Chem. Soc., 2003, 125: 4 426-4 427.

[7]

Whitsitt EA, Barron AR. Silica Coated Single Walled Carbon Nanotubes[J]. Nano. Lett., 2003, 3: 775-778.

[8]

Rastogi R, Kaushal R, Tripathi SK, et al. Comparative Study of Carbon Nanotube Dispersion using Surfactants[J]. J. Colloid Interface Sci., 2008, 328: 421-428.

[9]

Wang H, Zhou W, Ho DL, et al. Dispersing Single-walled Carbon Nanotubes with Surfactants: A Small Angle Neutron Scattering Study[J]. Nano Lett., 2008, 4: 1 789-1 793.

[10]

a Li B, Shi ZJ, Lian YF, et al. Aqueous Soluble Single-wall Carbon nanotube[J]. Chem. Lett., 2001, 7: 598-599.

[11]

Strano MS, Moore VC, Miller MK, et al. The Role of Surfactant Adsorption during Ultrasonication in the Dispersion of Single-walled Carbon Nanotubes[J]. J. Nanosci. Nanotech., 2003, 3: 81-86.

[12]

a Chen J, Liu H, Weimer W N-c E o C- N S b R F C Polymers[J]. J. Am. Chem. Soc., 2002, 124: 9 034-9 035.

[13]

Kathryn EL, Hermenegildo NP, Lisa JC, et al. Fluorescent Carbon Nanotubes in Cross-linked Micelles[J]. Chem. Mater., 2009, 21: 436-438.

[14]

Qin SH, Qin DQ, Warren TF, et al. Solubilization and Purification of Single-wall Carbon Nanotubes in Water by In Situ Radical Polymerization of Sodium 4-styrenesulfonate[J]. Macromolecules, 2004, 37: 3 965-3 697.

[15]

Konidari MV, Soulas DN, Papadokostaki KG, et al. Study of the Effect of Modified and Pristine Carbon Nanotubes on the Properties of Poly(vinyl alcohol) Nanocomposite Films[J]. J. Appl. Polym. Sci., 2012, 125: 471-477.

[16]

Mohammed S, Daniels ES, Klein A, et al. Emulsion Terpolymerization of Dimethyl Meta-isopropenyl Benzyl Isocyanate (TMI(R)) with Acrylic-monomers- process-development and Kinetics[J]. J. Appl. Polym. Sci., 1996, 61: 911-921.

[17]

Krishnan S, Klein A, Elaasser MS, et al. Influence of Chain Transfer Agent on the Cross-linking of Poly (n-butyl methacrylate-co-n-methylol acrylamide) Latex Particles and Films[J]. Macromolecules, 2003, 36: 3 511-3 518.

[18]

Yin HE, Lee CF, Chiu WY. Preparation of Thermally Curable Conductive Films PEDOT:P(SS-NMA) and Their Performances on Weather Stability and Water Resistance[J]. Polymer, 2011, 52: 5 065-5 074.

[19]

Kuo KH, Chiu WY, Don TM. Kinetic Behavior of Photo-polymerization of UV-curable Resins with Carboxylic Acid and Amino Groups[J]. J. Appl. Polym. Sci., 2010, 115: 1 982-1 994.

[20]

Zhang J, Tan KL, Gong QH. Characterization of the Polymerization of Su-8 Photoresist and Its Applications in Micro-electro-mechanical Systems (MEMS)[J]. Polym. Test, 2001, 20: 693-701.

[21]

a Xu G, Shi WF. Synthesis and Characterization of Hyperbranced Polyurethane Acrylates Used as UVCurable Oligomers for Coatings[J]. Prog. Org. Coat., 2005, 52: 110-117.

[22]

Wei HY, Liang HB, Zou JH, et al. UV Curable Powder Coatings Base on Dendritic Poly(ether-amide)[J]. J. Appl. Polym. Sci., 2003, 90: 287-291.

[23]

a Haddon MR, Smith TJ. The Chemistry and Applications of UVcured Adhesives[J]. Int. J. Adhes. Adhes., 1991, 11: 183-186.

[24]

Cho NB, Lim TH, Jeon YM, et al. Humidity Sensors Fabricated with Photo-curable Electrolyte Inks Using An Ink-jet Printing Technique and Their Properties [J]. Sensor Actuat B, 2008, 130: 594-598.

[25]

Saito R, Fujita M, Dresselhaus G, et al. Electronic Structure of Chiral Graphene Tubules[J]. Appl. Phys. Lett., 1992, 60: 2204-2207.

[26]

Yu JR, Grossiord N, Koning CE, et al. Controlling the Dispersion of Multi-wall Carbon Nanotubes in Aqueous Surfactant Solution[J]. Carbon, 2007, 45: 618-623.

[27]

Jiang LQ, Gao L, Sun J. Production of Aqueous Colloidal Dispersions of Carbon Nanotubes[J]. J. Colloid Interface Sci., 2003, 260: 89-94.

[28]

Sinani VA, Gheith MK, Yaroslavov AA, et al. Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations[J]. J. Am. Chem. Soc., 2005, 127: 3 463-3 472.

[29]

Bai YC, Lin DH, Wu FC, et al. Adsorption of Triton X-series Surfactants and Its Role in Stabilizing Multi-walled Carbon Nanotube Suspensions[J]. Chemosphere, 2010, 79: 362-367.

[30]

Yang J, Zou LD, Song HH. Preparing MnO2/PSS/CNTs Composite Electrodes by Layer-by-layer Deposition of MnO2 in The Membrane Capacitive Deionization[J]. Desalination, 2012, 286: 108-114.

[31]

Rao AM, Chen J, Richter E, et al. Effect of Van Der Waals Interactions on The Raman Modes in single Walled Carbon Nanotubes[J]. Phys. Rev. Lett., 2001, 86: 3 895-3 898.

[32]

Yan XL, Itoh TT, Kitahama YK, et al. A Raman Spectroscopy Study on Single-Wall Carbon Nanotube/Polystyrene Nanocomposites: Mechanical Compression Transferred from the Polymer to Single-wall Carbon Nanotubes[J]. Phys. Chem. C, 2012, 116: 17 897-17 903.

[33]

Shim BS, Tang ZY, Morabito MP, et al. Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-layer Composites of Single-walled Carbon Nanotubes for Optoelectronics[J]. Chem Matter, 2007, 19: 5 467-5 474.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/