Electrical Properties of GeTe-based Ternary Alloys

Yiqi Cao , Zhigang Li , Jianbo Wu , Xiaohua Huang , Shengnan Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 472 -475.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 472 -475. DOI: 10.1007/s11595-018-1847-2
Metallic Materials

Electrical Properties of GeTe-based Ternary Alloys

Author information +
History +
PDF

Abstract

Ge50-xSb xTe50 and Ge50-xBi xTe50 ternary alloys were synthesized by vacuum melting at 1273 K with the starting materials of Ge, Bi, Sb, and Te. The lattice structures were analyzed based on X-ray diffraction patterns, which could all be indexed to R3m rhombic structure. Electrical properties measurements revealed that the Ge-Sb-Te ternary alloys were p-type semiconductors with high electrical conductivity of 4.5×105 S∙m-1 near room temperature. And the maximum electrical property was obtained at Ge45Sb5Te50, with the power factor of 2.49×10-3 W∙m-1K-2 at 640 K. Due to the existence of secondary phases, the electrical conductivity of Ge-Bi-Te system was lower and Seebeck coefficient was higher comparing with those of Ge-Sb-Te system.

Keywords

thermoelectric materials / melting / ternary alloy / GeTe / thermoelectric property

Cite this article

Download citation ▾
Yiqi Cao, Zhigang Li, Jianbo Wu, Xiaohua Huang, Shengnan Zhang. Electrical Properties of GeTe-based Ternary Alloys. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 472-475 DOI:10.1007/s11595-018-1847-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Snyder GJ, Toberer ES. Complex Thermoelectric Materials[J]. Nat. Mater., 2008, 7: 105-114.

[2]

Fu CG, Bai SQ, Liu YT, et al. Realizing High Figure of Merit in Heavy-band P-type Half-Heusler Thermoelectric Materials[J]. Nat. Commun., 2015, 6: 8 144.

[3]

Li JQ, Li LF, Song SH, et al. High Thermoelectric Performance of GeTe-Ag8GeTe6 Eutectic Composites[J]. J. Alloys. Compd., 2013, 565: 144-147.

[4]

Wang TH, Wang QH, Leng C, et al. Parameter Analysis and Optimal Design for Two-stage Thermoelectric Cooler[J]. Appl. Energy., 2015, 154: 1-12.

[5]

Chang NK, Kim J. Numerical Examination of the Performance of a Thermoelectric Cooler with Peltier Heating and Cooling[J]. J. Elec. Mater., 2015, 44: 3 586-3 591.

[6]

Tian H, Sun XX, Jia Q, et al. Comparison and Parameter Optimization of a Segmented Thermoelectric Generator by Using the High Temperature Exhaust of a Diesel Engine[J]. Energy., 2015, 84: 121-130.

[7]

Kossyvakis DN, Vossou CG, Provatidis CG, et al. Computational Analysis and Performance Optimization of a Solar Thermoelectric Generator[J]. Renewable Energy., 2015, 81: 150-161.

[8]

He J, Liu YF, Funahashi R. OxideThermoelectrics: The Challenges, Progress, and Outlook[J]. J. Mater. Res., 2011, 26: 1 762-1 772.

[9]

Zhang SN, Zhu TJ, Yang SH, et al. Phase Compositions, Nanoscale Microstructures and Thermoelectric Properties in Ag2+ySbyTe1+y Alloys with Precipitated Sb2Te3 Plates[J]. Acta Mater., 2010, 58: 4 160-4 169.

[10]

Kambe K, Udono H. Convenient Melt-Growth Method for Thermoelectric Mg2Si[J]. J. Elec. Mater., 2014, 43: 2 212-2 217.

[11]

Yim JH, Park HH, Jang HW, et al. Thermoelectric Properties of Indium-Selenium Nanocomposites Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. J. Elec. Mater., 2012, 41: 1 354-1 359.

[12]

Fan XA, Yang F, Rong ZZ, et al. Characterization and Thermoelectric Properties of Bi0.4Sb1.6Te3 Nanostructured Bulk Prepared by Mechanical Alloying and Microwave Activated Hot Pressing[J]. Ceramics International., 2015, 41: 6 817-6 823.

[13]

Sie FR, Hwang CS, Kuo CH, et al. Thermoelectric Performance of Bi0.5Sb1.5Te3/Sb Composites Fabricated by Electroless Plating and Spark Plasma Sintering[J]. J. Elec. Mater., 2015, 44: 1 498-1 503.

[14]

Xing ZB, Li ZY, Tan Q, et al. Composition Optimization of P-Type AgSnmSbTem+2 Thermoelectric Materials Synthesized by Mechanical Alloying and Spark Plasma Sintering[J]. J. Alloys. Compd., 2014, 615: 451-455.

[15]

Wu J, Schmidt H, Amara KK, et al. Large Thermoelectricity Via Variable Range Hopping in Chemical Vapor Deposition Grown Single-layer MoS2[J]. Nano Lett., 2014, 14: 2 730-2 734.

[16]

Kim KC, Kwon B, Kim HJ, et al. Sn Doping in Thermoelectric Bi2Te3 Films by Metal-organic Chemical Vapor Deposition[J]. Appl. Sur. Sci., 2015, 353: 232-237.

[17]

Zhao XB, Yang SH, Cao YQ, et al. Synthesis of Nanocomposites with Improved Thermoelectric Properties[J]. J. Elec. Mater., 2009, 38: 1 017-1 024.

[18]

Cao YQ, Zhao XB, Zhu TJ, et al. Syntheses and Thermoelectric Properties of Bi2Te3/Sb2Te3 Bulk Nanocomposites with Laminated Nanostructure[J]. Appl. Phys. Lett., 2008, 92: 143106.

[19]

Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States[J]. Science, 2008, 321: 554-557.

[20]

Bali A, Kim IH, Rogl P, et al. Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions[J]. J. Elec. Mater., 2014, 43: 1 630-1 638.

[21]

Al-Otaibi J, Srivastava GP. Anharmonic Effects in the Thermoelectric Properties of PbTe[J]. J. Appl. Phys., 2014, 116: 043702.

[22]

Lu ZW, Li JQ, Wang CY, et al. Effects of Mn Substitution on the Phases and Thermoelectric Properties of Ge0.8Pb0.2Te alloy[J]. J. Alloys. Compd., 2015, 621: 345-350.

[23]

Welzmiller S, Heinke F, Huth P, et al. The Influence of Mn Doping on the Properties of Ge4Sb2Te7[J]. J. Alloys. Compd., 2015, 652: 74-82.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/