Effects of Strain Rate and Texture on the Tensile Behavior of Pre-strained NiCr Microwires

Xiuwen Zhou , Yidong Qi , Xudong Liu , Gao Niu , Bo Yang , Yi Yang , Ye Zhu , Bin Yu , Weidong Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 459 -465.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 459 -465. DOI: 10.1007/s11595-018-1845-4
Metallic Materials

Effects of Strain Rate and Texture on the Tensile Behavior of Pre-strained NiCr Microwires

Author information +
History +
PDF

Abstract

The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20 (Ni20Cr) were studied at strain rates from 4.8×10–4 s–1 to 1.1×10–1 s–1. Specimens were prepared through cold drawing with abnormal plastic deformation. The texture of the specimen was characterized using electron backscatter diffraction. Results revealed that the ultimate tensile strength and ductility of the pre-strained Ni20Cr microwires simultaneously increased with increasing strain rate. Twinning-induced negative strain rate sensitivity was discovered. Positive strain rate sensitivity was present in fracture flow stress, whereas negative strain rate sensitivity was detected in flow stress values of σ 0.5% and σ 1%. Tensile test of the pre-strained Ni20Cr showed that twinning deformation predominated, whereas dislocation slip deformation dominated when twinning deformation reached saturation. The trends observed in the fractions of 2°-5°, 5°-15°, and 15°-180° grain boundaries confirmed that twinning deformation dominated the first stage.

Keywords

tensile behavior / strain rate sensitivity / Ni20Cr / microstructure characterization / microwire

Cite this article

Download citation ▾
Xiuwen Zhou, Yidong Qi, Xudong Liu, Gao Niu, Bo Yang, Yi Yang, Ye Zhu, Bin Yu, Weidong Wu. Effects of Strain Rate and Texture on the Tensile Behavior of Pre-strained NiCr Microwires. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 459-465 DOI:10.1007/s11595-018-1845-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong ZW. Wire Bonding Using Insulated Wire and New Challenges in Wire Bonding[J]. Microelectron. Int., 2008, 25(2): 9-14.

[2]

Ampleford DJ, Jones B, Jennings CA, et al. Contrasting Physics in Wire Array Z-pinch Sources of 1-20 keV Emission on the Z Facility[J]. Phys. Plasmas, 2014, 21(5): 056708-1.

[3]

Phys. Rev. Lett., 2012, 109(15

[4]

Phys. Plasmas, 2014, 21(3

[5]

Gao XQ, Hu WC, Gao YS. Preparation of Ultrafine Tungsten Wire via Electrochemical Method in an Ionic Liquid[J]. Fusion Eng. and Des., 2013, 88: 23-27.

[6]

Haines MG. A Review of the Dense Z-pinch[J]. Plasma Phys. and Control. Fusion, 2011, 53(9): 093001

[7]

Dao M, Lu L, Asaro RJ, et al. Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals[J]. Acta Mater., 2007, 55(12): 4 041-4 065.

[8]

Kumar KS, Swygenhoven HV, Suresh S. Mechanical Behavior of Nanocrystalline Metals and Alloys1[J]. Acta Mater., 2003, 51(19): 5 743-5 774.

[9]

Swygenhoven HV. Grain Boundaries and Dislocations[J]. Science, 2002, 296(5565): 66-67.

[10]

Kim KS, Song JY, Chung EK, et al. Relationship between Mechanical Properties and Microstructure of Ultra-fine Gold Bonding Wires[J]. Mech.Mater., 2006, 38(1-2): 119-127.

[11]

Cho JH, Oh KH, Rollett AD, et al. Investigation of Recrystallization and Grain Growth of Copper and Gold Bonding Wires[J]. Metall. Mater. Trans. A, 2006, 37(10): 3 085-3 097.

[12]

He S, Houtte PV, Bael AV, et al. Strain Rate Effect in High-speed Wire Drawing Process[J]. Model. Simul. Mater. Sc, 2002, 10(3): 267-276.

[13]

Wei Q, Cheng S, Ramesh KT, et al. Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: Fcc versus Bcc Metals[J]. Mat. Sci Eng A-Struct., 2004, 381(1-2): 71-79.

[14]

Han BQ, Huang JY, Zhu YT, et al. Effect of Strain Rate on the Ductility of a Nanostructured Aluminum Alloy[J]. Scripta Mater., 2006, 54(6): 1 175-1 180.

[15]

Wang ML, Shan AD. Effect of Strain Rate on the Tensile Behavior of Ultra-fine Grained Pure Aluminum[J]. J. Alloy. Compd., 2008, 455(1-2): L10-L14.

[16]

Zhu YT, Liao XZ. Nanostructured Metals: Retaining Ductility[J]. Nat. Mater., 2004, 3(6): 351-352.

[17]

Gray GT. Influence of Strain Rate and Temperature on the Structure. Property Behavior of High-Purity Titanium[J]. J. Phys. IV France, 1997, 07(C3): 423-428.

[18]

Song SG, Gray GT. Influence of Temperature and Strain Rate on Slip and Twinning Behavior of Zr[J]. Metall. Mater. Trans. A, 1995, 26(10): 2 665-2 675.

[19]

Spitzig WA, Keh AS. Orientation Dependence of the Strain-rate Sensitivity and ThermallyActivated Flow in Iron Single Crystals[J]. Acta Metall., 1970, 18(9): 1 021-1 033.

[20]

Khan AS, Liang RQ. Behaviors of Three BCC Metal over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling[J]. Int. J. Plasticity, 1999, 15(10): 1 089-1 109.

[21]

Conrad H. Grain-size Dependence of the Flow Stress of Cu From Millimeters to Nanometers[J]. Metall. Mater. Trans. A, 2004, 35(9): 2 681-2 695.

[22]

Wang YM, Ma E. Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals[J]. Mat. Sci Eng A-Struct., 2004, 375-377: 46-52.

[23]

Wang YM, Chen MW, Zhou FH, et al. High Tensile Ductility in a Nanostructured Metal[J]. Nature, 2002, 419(6910): 912-915.

[24]

Lu L, Li S X, Lu K. An Abnormal Strain Rate Effect on Tensile Behavior in Nanocrystalline Copper[J]. Scripta Mater., 2001, 45(10): 1 163-1 169.

[25]

Follansbee PS, Huang JC, Gray GT. Low-temperature and High-strainrate Deformation of Nickel and Nickel-carbon Alloys and Analysis of the Constitutive Behavior According to an Internal State Variable Model[J]. Acta Metall. Mater., 1990, 38(7): 1 241-1 254.

[26]

Rack HJ, Cohen M. Strain Hardening of Iron-titanium Alloys at Very Large Strains[J]. Mat. Sci Eng., 1970, 6(5): 320-326.

[27]

Cheng S, Ma E, Wang YM, et al. Tensile Properties of in Situ Consolidated Nanocrystalline Cu[J]. Acta Mater., 2005, 53(5): 1 521-1 533.

[28]

Schiøtz J, Vegge T, Tolla FDD, et al. Atomic-scale Simulations of the Mechanical Deformation of Nanocrystalline Metals[J]. Phys. Rev. B, 1999, 60(17): 11 971-11 983.

[29]

Swygenhoven HV, Spaczer M, Caro A. Microscopic Description of Plasticity in Computer Generated Metallic Nanophase Samples: a Comparison between Cu and Ni[J]. Acta Mater., 1999, 47(10): 3 117-3 126.

[30]

Butt MZ, Sattar U. Deformation Behavior of Nickel-chromium Alloys with Special Reference to the Nature of Solute Distribution[J]. J. Mater. Sci. Lett., 2001, 20(8): 759-761.

[31]

Chun YB, Davies CHJ. Twinning-induced Negative Strain Rate Sensitivity in Wrought Mg Alloy AZ31[J]. Mat. Sci Eng A-Struct., 2011, 528(18): 5 713-5 722.

[32]

Zhou XW, Qi YD, Liu XD, et al. Investigation on the Microstructure of As-deformed NiCr Microwires Using TEM[J]. RSC Adv., 2015, 5(110): 90 852-90 857.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/