Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD

Peng Xu , Rong Tu , Song Zhang , Meijun Yang , Qizhong Li , Takashi Goto , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 368 -374.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 368 -374. DOI: 10.1007/s11595-018-1831-x
Advanced Materials

Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD

Author information +
History +
PDF

Abstract

Catalytic direct decomposition of NO by perovskite-type catalysts has attracted much attention for the various possible components and the unique structure. LaCoO3 nanoparticles were precipitated on α-Al2O3 micro powders by rotary chemical vapor deposition (rotary CVD) and its catalytic performance for the decomposition of NO was investigated. LaCoO3 nano-particles with 100 nm in average diameter and 1.5% in mass were uniformly dispersed on α-Al2O3 powder. The conversion of NO increased with increasing temperature from 400 to 950 °C, and reached 28.7% at 950 °C. The gas velocity of transformed NO on LaCoO3 nano-particles catalyst per mass unit was 7.7 mL/(g min), showing a good catalytic activity over the calculated results of pure catalysts. After five times of aging performance experiments, the NO conversion kept the same value, showing a good aging performance and thermal stability.

Keywords

rotary chemical vapor deposition / LaCoO3 nano-particles / NO decomposition / catalyst

Cite this article

Download citation ▾
Peng Xu, Rong Tu, Song Zhang, Meijun Yang, Qizhong Li, Takashi Goto, Lianmeng Zhang. Catalytic Decomposition of Nitric Oxide by LaCoO3 Nano-particles Prepared by Rotary CVD. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 368-374 DOI:10.1007/s11595-018-1831-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Say Z, Dogac M, Vovk EI, et al. Palladium Doped Perovskite-based NO Oxidation Catalysts: The Role of Pd and B-sites for NOx Adsorption Behavior via In-situ Spectroscopy[J]. Appl. Catal. B Environ., 2014, 154-155: 51-61.

[2]

Wu Z, Xu L, Zhang W, et al. Structure Sensitivity of Low-temperature NO Decomposition on Au Surfaces[J]. J. Catal., 2013, 304(2): 112-122.

[3]

Hussain M, Fino D, Russo N. N2O Decomposition by Mesoporous Silica Supported Rh Catalysts[J]. J. Hazard. Mater., 2012, 211-212: 255-265.

[4]

Morikawa A, Okumura K, Ishii M, et al. Characterization of Termetallic Pt-Ir-Au Catalysts for NO Decomposition[J]. Rare Met., 2011, 30(1): 53-57.

[5]

Edward GT, Norman HC. The Catalytic Decomposition of Nitric Oxide at the Surface of Platinum[J]. J. Chem. Soc., 1926, 129: 1 709-1 713.

[6]

Hong WJ, Ueda M, Iwamoto S, et al. Synthesis of Highly Effective CeO x-MnO y-BaO Catalysts for Direct NO Decomposition[J]. Catal. Letters, 2012, 142: 32-41.

[7]

Hong WJ, Ueda M, Iwamoto S, et al. Effect of Fe Content on Physical Properties of BaO-CeO x-FeO y Catalysts for Direct NO Decomposition[J]. Appl. Catal. B Environ., 2011, 106(1-2): 142-148.

[8]

Masui T, Uejima S, Tsujimoto S, et al. Direct NO Decomposition over C-type Cubic Y2O3-Pr6O11-Eu2O3 Solid Solutions[J]. Catal. Today, 2015, PB(242): 338-342.

[9]

Tsujimoto S, Nishimura C, Masui T, et al. Direct Decomposition of Nitrogen Monoxide on (Ho, Zr, Pr)2O3+δ Catalysts[J]. Catal. Commun., 2014, 43: 84-87.

[10]

Tsujimoto S, Yasuda K, Masui T, et al. Effects of Tb and Ba Introduction on the Reaction Mechanism of Direct NO Decomposition over C-type Cubic Rare Earth Oxides based on Y2O3[J]. Catal. Sci. Technol., 2013, 3(8): 1 928

[11]

Sajith P K, Shiota Y, Yoshizawa K. Role of Acidic Proton in the Decomposition of NOover Dimeric Cu(I) Active Sites in Cu-ZSM-5 Catalyst: A QM/MM Study[J]. ACS Catal., 2014, 4(6): 2 075-2 085.

[12]

Smeets PJ, Meng Q, Corthals S, et al. Co-ZSM-5 Catalysts in the Decomposition of N2O and the SCR of NOwith CH4: Influence of Preparation Method and Cobalt Loading[J]. Appl. Catal. B Environ., 2008, 84(3-4): 505-513.

[13]

Boroń P, Chmielarz L, Gurgul J, et al. The Influence of the Preparation Procedures on the Catalytic Activity of Fe-BEA Zeolites in SCR of NOwith Ammonia and N2O Decomposition[J]. Catal. Today, 2014, 235: 210-225.

[14]

Gan L, Zhong Q, Song Y, et al. La0.7Sr0.3Mn0.8Mg0.2O3-δ Perovskite Type Oxides for NO Decomposition by the Use of Intermediate Temperature Solid Oxide Fuel Cells[J]. J. Alloys Compd., 2015, 628: 390-395.

[15]

Ishihara T, Shinmyo Y, Goto K, et al. NO Decomposition on Ruddlesden- Popper-Type Oxide, Sr3Fe2O7, Doped with Ba and Zr[J]. Chem. Lett., 2008, 37(3): 318-319.

[16]

Iwakuni H, Shinmyou Y, Yano H, et al. Effects of Added CO2 and H2 on the Direct Decomposition of NOover BaMnO3-based Perovskite Oxide[J]. Bull. Chem. Soc. Jpn., 2008, 81(9): 1 175-1 182.

[17]

Gao L, Chua H, Kawi S. The Direct Decomposition of NOover the La2CuO4 Nanofiber Catalyst[J]. J. Solid State Chem., 2008, 181(10): 2 804-2 807.

[18]

Zhu J, Xiao D, Li J, et al. Perovskite-Like Mixed Oxides (LaSrMn1−x NixO4+δ, 0≤x≤1) as Catalyst for Catalytic NO Decomposition: TPD and TPR Studies[J]. Catal. Letters, 2009, 129(1-2): 240-246.

[19]

Penninger MW, Kim CH, Thompson LT, et al. DFT Analysis of NOOxidation Intermediates on Undoped and Doped LaCoO3 Perovskite[J]. J. Phys. Chem. C, 2015, 119(35): 20 488-20 494.

[20]

Li C, Han J, Zhang Z, et al. Preparation of TiO2-Coated Al2O3 Particles by Chemical Vapor Deposition in a Rotary Reactor[J]. J. Am. Ceram. Soc., 2004, 82(8): 2 044-2 048.

[21]

Pinilla JL, Utrilla R, Lázaro MJ, et al. A Novel Rotary Reactor Configuration for Simultaneous Production of Hydrogen and Carbon Nanofibers[J]. Int. J. Hydrogen Energy, 2009, 34(19): 8 016-8 022.

[22]

Zhang J, Tu R, Goto T. Spark Plasma Sintering of Al2O3-cBN Composites Facilitated by Ni Nanoparticle Precipitation on cBN Powder by Rotary Chemical Vapor Deposition[J]. J. Eur. Ceram. Soc., 2011, 31(12): 2 083-2 087.

[23]

Tu R, Zhu P, Zhang S, et al. Comparison of CVD-deposited Ni and Dry-blended Ni Powder as Sintering Aids for TiN Powder[J]. J. Eur. Ceram. Soc., 2014, 34(8): 1 955-1 961.

[24]

Michel C, Huong P VAN. Spectres Infrarouge et Raman des Pérovskites[J]. Ann. Chim., 1974, 9: 19-29.

[25]

Li Z, Meng M, Zha Y, et al. Highly Efficient Multifunctional Dually- substituted Perovskite Catalysts La1−xKxCo1−yCuyO3−δ Used for Soot Combustion, NOx Storage and Simultaneous NOx-soot Removal[J]. Appl. Catal. B Environ., 2012, 121-122(x): 65-74.

[26]

Winter E R S. The Catalytic Decomposition of Nitric Oxide by Metallic Oxides[J]. J. Catal., 1971, 22(2): 158-170.

[27]

Shin S, Arakawa H, Hatakeyama Y, et al. Absorption of NOin the Lattice of an Oxygen-deficient Perovskite SrFeO3−x and the Infrared Spectroscopic Study of the System NO-SrFeO3−x[J]. Mater. Res. Bull., 1979, 14(5): 633-639.

[28]

Teraoka Y, Harada T, Kagawa S. Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co- and Mn-based Perovskite-type Oxides[J]. J. Chem. Soc. Trans., 1998, 94(13): 1 887-1 891.

[29]

Zhu Y, Wang D, Yuan F, et al. Direct NO Decomposition over La2-xBaxNiO4 Catalysts Containing BaCO3 Phase[J]. Appl. Catal. B Environ., 2008, 82(3-4): 255-263.

[30]

Iwakuni H, Shinmyou Y, Yano H, et al. Direct decomposition of NOinto N2 and O2 on BaMnO3-based perovskite oxides[J]. Appl. Catal. B Environ., 2007, 74(3-4): 299-306.

[31]

Tsujimoto S, Masui T, Imanaka N. Fundamental Aspects of Rare Earth Oxides Affecting Direct NO Decomposition Catalysis[J]. Eur. J. Inorg. Chem., 2015, 2015(9): 1 524-1 528.

[32]

Haneda M, Tsuboi G, Nagao Y, et al. Direct Decomposition of NO over Alkaline Earth Metal Oxide Catalysts Supported on Cobalt Oxide[J]. Catal. Letters, 2004, 97(3-4): 145-150.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/