Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD

Peipei Zhu , Qingfang Xu , Han Guo , Rong Tu , Song Zhang , Meijun Yang , Lianmeng Zhang , Takashi Goto , Jiasheng Yan , Shusen Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 356 -362.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 356 -362. DOI: 10.1007/s11595-018-1829-4
Advanced Materials

Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD

Author information +
History +
PDF

Abstract

Void-free β-SiC films were deposited on Si(001) substrates by laser chemical vapor deposition using hexamethyldisilane (HMDS) as the precursor. The effect of the time of introducing HMDS, i e, the substrate temperature when HMDS introduced (T in), on the preferred orientation, surface microstructure and void was investigated. The orientation of the deposited SiC films changed from <001> to random to <111> with increasing T in. The surface showed a layer-by-layer microstructure with voids above T in ⩾ 773 K, and then transformed into mosaic structure without voids at T in= 298 K. The mechanism of the elimination of voids was discussed. At T in =298 K, Si surface can be covered by an ultrathin SiC film, which inhibits the out-diffusion of Si atoms from substrate and prohibites the formation of the voids.

Keywords

voids / HMDS / β-SiC / laser CVD

Cite this article

Download citation ▾
Peipei Zhu, Qingfang Xu, Han Guo, Rong Tu, Song Zhang, Meijun Yang, Lianmeng Zhang, Takashi Goto, Jiasheng Yan, Shusen Li. Elimination of Voids at Interface of β-SiC Films and Si Substrate by Laser CVD. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 356-362 DOI:10.1007/s11595-018-1829-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Castelletto S, Johnson BC, Zachreson C, et al. Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles[J]. ACS Nano, 2014, 8(8): 7 938-7 947.

[2]

Michaud JF, Portail M, Chassagne T, Zielinski M, Alquier D. 3C-SiC: New Interest for MEMS Devices[J]. Mater. Sci. Forum, 2014, 806: 3-9.

[3]

Yang N, Zhuang H, Hoffmann R, et al. Nanocrystalline 3C-SiC Electrode for Biosensing Applications[J]. Anal. Chem., 2011, 83(15): 5 827-5 830.

[4]

Arci PD, Allegra BT. 3C-SiC Epitaxial Growth on Large Area Silicon: Thin Films[J]. Res. Signpost, 2012, 661(2): 145-191.

[5]

Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail[J]. Crit. Rev. Solid State Mater. Sci., 2014, 40(1): 56-76.

[6]

Anzalone R, Severino A, Arrigo GD, et al. Heteroepitaxy of 3C-SiC on Different On-axis Oriented Silicon Substrates[J]. J. Appl. Phys., 2009, 105(8): 2-8.

[7]

Nordell N, Nishino S, Yang JW, Jacob C, Pirouz P. Growth of SiC Using Hexamethyldisilane in a Hydrogen-poor Ambient[J]. Appl. Phys. Lett., 1994, 64(13): 1 647-1 649.

[8]

Wu CH, Jacob C, Ning XJ. Epitaxial Growth of 3C-SiC on Si (111) from Hexamethyldisilane[J]. J. Cryst. Growth, 1996, 158(4): 480-490.

[9]

Kubo N, Kawase T, Asahina S, et al. Epitaxial Growth of 3C-SiC on Si(111) Using Hexamethyldisilane and Tetraethylsilane[J]. Jpn. J. Appl. Phys., 2004, 43(11A): 7 654-7 660.

[10]

Teker K, Jacob CU, Chung J, Hong MH. Epitaxial Growth of 3C-SiC on Si(001) Using Hexamethyldisilane and Comparison with Growth on Si(111)[J]. Thin Solid Films, 2000, 371: 53-60.

[11]

Cheng H, Tu R, Zhang S, et al. Preparation of Highly Oriented β-SiC Bulks by Halide Laser Chemical Vapor Deposition[J]. J. Eur. Ceram. Soc., 2017, 37(2): 509-515.

[12]

Gupta A, Jacob C. Unusual Defects in Silicon Carbide Thin Films Grown by Multiple or Interrupted Growth Technique[J]. Microelectron. Eng., 2006, 83: 5-8.

[13]

Goswami R. Solid Phase Epitaxial Growth of 3C-SiC Thin Film on Si and Annihilation of Nanopores[J]. Acta Mater., 2014, 65: 418-424.

[14]

Li JP, Steckl AJ. Nucleation and Void Formation Mechanisms in SiC Thin Film Growth on Si by Carbonization[J]. J.Electrochem.Soc., 1995, 142(2): 634-641.

[15]

Seo YH, Chul KK, Suh E, Lee HJ. Effects of Experimental Parameters on Void Formation in the Growth of 3C-SiC Thin Film on Si Substrate[J]. J.Electrochem., 1998, 145(1): 292-299.

[16]

Zhang S, Tu R, Goto T. High-Speed Epitaxial Growth of β-SiC Film on Si (111) Single Crystal by Laser Chemical Vapor Deposition[J]. J.Am.Ceram.Soc., 2012, 95(9): 2 782-2 784.

[17]

Zhang S, Xu Q, Tu R, Goto T, Zhang L. High-Speed Preparation of &lt;111&gt;- and &lt;110&gt;-Oriented β-SiC Films by Laser Chemical Vapor Deposition[J]. J. Am. Ceram. Soc., 2014, 97(3): 952-958.

[18]

Zhang S, Xu Q, Hu Z, et al. Ultra-fast Epitaxial Growth of β-SiC Films on α(4H)-SiC Using Hexamethyldisilane (HMDS) at Low Temperature[J]. Ceram. Int., 2016, 42(3): 4 632-4 635.

[19]

Xu Q, Zhu P, Sun Q, et al. Elimination of Double Position Domains (DPDs) in Epitaxial &lt;111&gt;-3C-SiC on Si(111) by Laser CVD[J]. Appl. Surf. Sci., 2017, 426: 662-666.

[20]

Zheng XH. Comprehensive Analysis of Microtwins in the 3C–SiC Films on Si (001) Substrates[J]. J. Cryst. Growth, 2001, 233(1-2): 40-44.

[21]

Bosi M. Growth and Characterization of 3C-SiC Films for Micro Electro Mechanical Systems (MEMS) Applications[J]. Cryst. Growth Des., 2009, 9(11): 4 852-4 859.

[22]

Lefebvre D. Growth Mode and Electric Properties of Graphene and Graphitic Phase Grown by Argon-Propane Assisted CVD on 3C-SiC/Si and 6H-SiC[J]. J. Cryst. Growth, 2012, 349(1): 27-35.

[23]

Chaika AN, Aristov VY, Molodtsova OV. Graphene on Cubic-SiC[J]. Prog. Mater. Sci., 2017, 89: 1-30.

[24]

Zhuang H, Yang N, Zhang L, et al. Graphene/3C-SiC Hybrid Nanolaminate[J]. ACS Appl. Mater. Interfaces, 2015, 7(51): 28 508-28 517.

[25]

Zhuang H, Zhang L, Staedler T, Jiang X. Low Temperature Hetero- Epitaxial Growth of 3C-SiC Films on Si Utilizing Microwave Plasma CVD **[J]. Chem. Vap. Depos., 2013, 19(1-3): 1-9.

[26]

Nagasawa H, Yagi K, Kawahara T. 3C-SiC Hetero-Epitaxial Growth on Undulant Si (001) Substrate[J]. J. Cryst. Growth, 2002, 239: 1 244-1 249.

[27]

Nagasawa H, Yagi K, Kawahara T, Hatta N. Reducing Planar Defects in 3C-SiC[J]. Chem. Vap. Depos., 2006, 12(8-9): 502-508.

[28]

Zhu P, Xu Q, Chen R, et al. Structural Study of β-SiC(001) Films on Si(001) by Laser Chemical Vapor Deposition[J]. J. Am. Ceram. Soc., 2017, 100(4): 1 634-1 641.

[29]

Takahashi K, Nishino S, Saraie J. Low-Temperature Growth of 3C-SiC on Si Substrate by Chemical Vapor Deposition Using Hexamethyldisilane as a Source Material[J]. J. Electrochem. Soc., 1992, 139(12): 3 565-3 571.

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/