Infrared Emissivity of La0.8Sr0.2MnO3 with Three Different Structures

Lulu Song , Xingmei Shen , Guoqing Cheng , Xingrong Wu , Liaosha Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 338 -342.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 338 -342. DOI: 10.1007/s11595-018-1826-7
Advanced Materials

Infrared Emissivity of La0.8Sr0.2MnO3 with Three Different Structures

Author information +
History +
PDF

Abstract

La0.8Sr0.2MnO3 samples with rhombohedral, orthohombic and monoclinic structures were prepared by solid state reaction, sol-gel and co-precipitation methods, respectively. Lattice parameters, grain size, morphology, infrared absorption and emissivity of samples were investigated. The results indicated that the average crystallite size calculated from XRD result and particle size of orthohombic sample were smaller than those of the other two samples, and honeycomb shape grains were observed in orthohombic sample. Due to lower crystal symmetry, Mn-O stretching vibration peaks of the three samples shifted to higher infrared wavenumber. According to the theory of wave optics and Kirchhoff law, bigger rhombohedral sample showed higher emissivity than monoclinic one. However, due to the honeycomb structure of orthohombic sample, repeated reflection and scattering led to the increase of absorption, and orthohombic sample exhibited the highest emissivity.

Keywords

optical materials / microstructure / light absorption / light reflection

Cite this article

Download citation ▾
Lulu Song, Xingmei Shen, Guoqing Cheng, Xingrong Wu, Liaosha Li. Infrared Emissivity of La0.8Sr0.2MnO3 with Three Different Structures. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 338-342 DOI:10.1007/s11595-018-1826-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Monfared SH. Fabrication of L1-xSrxMnO3 Compound And Research about Its Emissivity[D]. China: Harbin Institute of Technology, 2011

[2]

Zener C. Interaction between the D-shell in the Transition Metals. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Phys. Rev., 1951, 82: 403-405.

[3]

Anderson PW, Hasegawa H. Consideration on Double Exchange[J]. Phys. Rev., 1955, 100: 675-680.

[4]

Millis AJ, Littlewood PB, Shraiman BI. Double Exchange Alone does not Explain the Resistivity of L1-xSrxMnO3[J]. Phys. Rev. Lett., 1995, 74: 5 144-5 153.

[5]

Hwang HY, Cheong SW, Radaelli PG, et al. Lattice Effects on the Magnetoresistance in Doped LaMnO3[J]. Phys. Rev. Lett., 1995, 75: 914-917.

[6]

Shimakawa Y, Yoshitake T. A Variable-Emittance Radiator based on A Metal-Insulator Transition of (La, Sr)MnO3 Thin Films[J]. Appl. Phys. Lett., 2002, 80: 4 864-4 865.

[7]

Tokura Y, Urushibara A, Moritomo Y, et al. Giant Magnetotransport Phenomena on Filling-Controlled Kondo Lattice System: L1-xSrxMnO3 [J]. J. Phys. Soc. Jpn., 1994, 63: 3 931-3 935.

[8]

Vernardou D, Pemble ME, Sheel DW. Tungsten-Doped Vanadium Oxides Prepared by Direct Liquid Injection MOCVD**[J]. Chem. Vap. Depos., 2007, 13: 158-162.

[9]

Kakiuchida H, Jin P, Okada M, et al. Optical Characterization of Titanium- Vanadium Oxide Films[J]. Jpn. J. Appl. Phys., 2007, 46: 621-626.

[10]

Piccirillo C, Binions R, Parkin IP. Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2 and V2O5 Deposited on Glass by Aerosol- Assisted CVD[J]. Chem. Vap. Depos., 2007, 13: 145-151.

[11]

Shimazaki K, Tachikawa S, Ohnishi A, et al. Radiative and Optical Properties of L1-xSrxMnO3 (0 ≤ x≤0.4) in the Vicinity of Metal-Insulator Transition Temperatures from 173 to 413 K 1[J]. Int. J. Thermophys., 2001, 22: 1 549-1 561.

[12]

Tachikawa S, Ohnishi A, Shimakawa Y, et al. Development of a Variable Emittance Radiator based on a Perovskite Manganese Oxide[J]. J. Thermophys Heat Tr., 17(2): 267-268

[13]

Tang GC, Yu Y, Chen W, et al. Thermochromic Properties of Manganese Oxides L1-xSrxMnO3 (A=Ca, Ba )[J]. Mater. Lett., 2008, 62: 2 914-2 916.

[14]

Shen XM, Xu GY, Shao CM, et al. Temperature Dependence of Infrared Emissivity of Doped Manganeseoxides in Different Wavebands (3-5 And 8-14 μ m)[J]. J. Alloys Compd., 2009, 479: 420-422.

[15]

Shen XM, Xu GY, Shao CM, et al. Temperature Dependence of Infrared Emissivity Properties of (La0.8Sr0.2)1-xMnO3[J]. J. Alloys Compd., 2009, 474: 375-377.

[16]

Shen XM, Xu GY, Shao CM. The Effect of B Site Doping on Infrared Emissivity of Lanthanum Manganites La0.8Sr0.2Mn1-xBxO3(B = Ti or Cu)[J]. J. Alloy. Compd., 2010, 499: 212-214.

[17]

Shen XM, Xu GY, Shao CM. The Effect of K+, Na+ Doping on Infrared Emissivity of Lanthanum Manganites[J]. Solid State Communication., 2009, 149: 852-854.

[18]

Shen XM, Xu GY, Shao CM. Influence of Structure on Infrared Emissivity of Lanthanum Manganites[J]. Physica B, 2010, 405: 1 090-1 094.

[19]

Cullity BD, Stock SR. Elements of X-Ray Diffraction[M]. 3rd ed. American: Prentice Hall, 2001 459

[20]

Arima T, Tokura Y. Optical Study Of Electronic Structure in Perovskite- Type RMO3(R=La, Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)[J]. J. Phys. Soc. Jpn., 1995, 64: 2 488-2 501.

[21]

Kim K H, Gu J Y, Choi H S, et al. Frequency Shifts of the Internal Phonon Modes in La0.7Ca0.3MnO3[J]. Phys. Rev. Lett., 1996, 77: 1 877-1 880.

[22]

Aronson JR, Emsiie AG. Spectral Reflectance and Emittance of Particulate Materials.1: Theory[J]. Appl. Pt., 1973, 12(11): 2 563-2 572.

[23]

Aronson JR, Emsiie AG. Spectral Reflectance and Emittance of Particulate Materiais.1: Application and Results[J]. Appl pt., 1973, 12(11): 2 573-2 584.

[24]

Cui BS, Wang Z J, et al. The Effect of Structure on IR Emissivity[J]. Journal of Fudan University (Natural Science), 2006, 45(3): 386-387.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/