Synthesis and Photovoltaic Properties of A Dithieno[6,5-b:10,11-b′]-8H-Cyclopentyl[1,2-b:4,3-b′]Diphenanthrene based Donor-Acceptor Alternating Copolymer

Mingyan Yang , Fei Xia , Chun Zhan , Shengqiang Xiao

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 288 -295.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 288 -295. DOI: 10.1007/s11595-018-1819-6
Advanced Materials

Synthesis and Photovoltaic Properties of A Dithieno[6,5-b:10,11-b′]-8H-Cyclopentyl[1,2-b:4,3-b′]Diphenanthrene based Donor-Acceptor Alternating Copolymer

Author information +
History +
PDF

Abstract

A novel fused nonacyclic monomer of dithieno[6,5-b:10,11-b′]-8H-cyclopentyl[1,2-b:4,3-b′] diphenanthrene (DTCPDP) was synthesized by combining the structural features of ladder-type and multiple fused multi-cyclic aromatics. DTCPDP has a single sp3-hybridized carbon bridge between fused multi-cyclic aromatics. The copolymerization of DTCPDT with the electron accepting unit of 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) via Stille coupling afforded a novel donor-acceptor (D-A) alternating copolymer PDTCPDT-DTBT. The copolymer exhibited good chemical and thermal stabilities, with an optical band gap of 1.82 eV and a low-lying highest occupied molecular orbital (HOMO) energy level of -5.32 eV. When the copolymer was incorporated into polymer: fullerene (PC71BM) blends to fabricate bulk heterojunction polymer solar cell devices, the devices exhibited a moderate maximum power conversion efficiency (PCE) of 5.90%.

Keywords

polymer solar cells / bulk heterojunction / ladder-type conjugated polymers

Cite this article

Download citation ▾
Mingyan Yang, Fei Xia, Chun Zhan, Shengqiang Xiao. Synthesis and Photovoltaic Properties of A Dithieno[6,5-b:10,11-b′]-8H-Cyclopentyl[1,2-b:4,3-b′]Diphenanthrene based Donor-Acceptor Alternating Copolymer. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 288-295 DOI:10.1007/s11595-018-1819-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Søndergaard R, Hösel M, Angmo D, et al. Roll-to-Roll Fabrication of Polymer Solar Cells[J]. Materials Today, 2012, 15(1-2): 36-49.

[2]

Søndergaard RR, Hösel M, Krebs FC. Roll-to-Roll Fabrication of Large Area Functional Organic Materials[J]. Journal of Polymer Science Part B Polymer Physics, 2013, 51(1): 16-34.

[3]

Kaltenbrunner M, White MS, Głowacki ED, et al. Ultrathin and Lightweight Organic Solar Cells with High Flexibility[J]. Nature Communications, 2012, 3(1): 85-100.

[4]

Zhang S, Ye L, Hou J. Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Well-Known PBDTTT Polymers[J]. Advanced Energy Materials, 2016, 6(11): 1 502 529

[5]

Xiao S, Zhang Q, You W. Molecular Engineering of Conjugated Polymers for Solar Cells: An Updated Report[J]. Advanced Materials, 2017, 29(20): 1 601 391

[6]

Jiang Y, Yu D, Lu L, et al. Tuning Optical and Electronic Properties of Star-Shaped Conjugated Molecules with Enlarged π-Delocalization for Organic Solar Cell Application[J]. Journal of Materials Chemistry A, 2013, 1(28): 270 8-279.

[7]

Lu L, Zheng T, Wu Q, et al. Recent Advances in Bulk Heterojunction Polymer Solar Cells[J]. Chemical Reviews, 2015, 115(23): 12 666-12 731.

[8]

Jiang Y, Yang M, Huang X, et al. A Novel Donor-Acceptor Alternating Copolymer Based on Angular-Shaped Benzo[2, 1-b:3, 4-b′]Diselenophene for Bulk Heterojunction Solar Cells[J]. Polymer Chemistry, 2015, 6(8): 383 1-392.

[9]

Kang H, Kee S, Yu K, et al. Simplified Tandem Polymer Solar Cells with an Ideal Self-Organized Recombination Layer[J]. Advanced Materials, 2015, 27(8): 408 1-413.

[10]

Liu Y, Zhao J, Li Z, et al. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells[J]. Nature Communications, 2014, 5(5): 5 293

[11]

Yusoff ARBM, Kim D, Kim HP, et al. High Efficiency Solution Processed Polymer Inverted Triple-Junction Solar Cell Exhibiting Conversion Efficiency of 11.83%[J]. Energy & Environmental Science, 2014, 8(1): 303-316.

[12]

Jiang Y, Xiao S, Xu B, et al. Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium( V) Oxide Hydrate in a Polymer-Fullerene Blend Solar Cell[J]. ACS Applied Materials &Interfaces, 2016, 8(18): 11 658-11 666.

[13]

Zhao J, Li Y, Yang G, et al. Efficient Organic Solar Cells Processed From Hydrocarbon Solvents[J]. Nature Energy, 2016, 1(2): 15 027

[14]

Zhao W, Li S, Yao H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7 148-151.

[15]

Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for Organic Solar Cells[J]. Macromolecules, 2012, 45(2): 607-632.

[16]

Li Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption[J]. Accounts of Chemical Research, 2012, 45(5): 723-733.

[17]

Wu JS, Cheng SW, Cheng YJ, et al. Donor-Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells[J]. Chemical Society Reviews, 2015, 44(5): 1 113-1154.

[18]

Zheng Q, Jung BJ, Sun J, et al. Ladder-Type Oligo-p-phenylene-Containing Copolymers with High Open-Circuit Voltages and Ambient Photovoltaic Activity[J]. Journal of the American Chemical Society, 2010, 132(15): 5 394-5 404.

[19]

Zheng T, Cai Z, Ho-Wu R, et al. Synthesis of Ladder-Type Thienoacenes and Their Electronic and Optical Properties[J]. Journal of the American Chemical Society, 2016, 138(3): 868-875.

[20]

Cai Z, Lo W Y, Zheng T, et al. Exceptional Single-Molecule Transport Properties of Ladder-Type Heteroacene Molecular Wires[J]. Journal of the American Chemical Society, 2016, 138(33): 10 630-10 635.

[21]

Guo X, Zhou N, Lou SJ, et al. Polymer Solar Cells with Enhanced Fill Factors[J]. Nature Photonics, 2013, 7(10): 825-833.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/