An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling

Yanghuan Zhang , Jinglong Wang , Peilong Zhang , Yongguo Zhu , Zhonghui Hou , Hongwei Shang

Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 278 -287.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2018, Vol. 33 ›› Issue (2) : 278 -287. DOI: 10.1007/s11595-018-1818-7
Advanced Materials

An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling

Author information +
History +
PDF

Abstract

Nanocrystalline and amorphous LaMg12-type LaMg11Ni + x wt% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter (DSC) connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability (HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time.

Keywords

LaMg12 alloy / mechanical milling / activation energy / hydrogen storage kinetics

Cite this article

Download citation ▾
Yanghuan Zhang, Jinglong Wang, Peilong Zhang, Yongguo Zhu, Zhonghui Hou, Hongwei Shang. An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling. Journal of Wuhan University of Technology Materials Science Edition, 2018, 33(2): 278-287 DOI:10.1007/s11595-018-1818-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mori D, Hirose K. Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles[J]. Int. J. Hydrogen Energy, 2009, 34(10): 4 569-4 574.

[2]

Zhang YH, Yuan ZM, Zhai TT, et al. Effects of Annealing Temperature on the Electrochemical Hydrogen Storage Behaviors of La-Mg-Ni- Based A2B7–type Electrode Alloys[J]. Metall. Mater. Trans. A, 2015, 46(5): 2 294-2 303.

[3]

Cipriani G, Dio VD, Genduso F, et al. Perspective on Hydrogen Energy Carrier and Its Automotive Applications[J]. Int. J. Hydrogen Energy, 2014, 39(16): 8 482-8 494.

[4]

Schlapbach L Z, ttel A. Hydrogen-storage Materials for Mobile Applications[J]. Nature, 2001, 414(6861): 353-358.

[5]

Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review[J]. Int. J. Hydrogen Energy, 2007, 32(9): 1 121-1 140.

[6]

Milliken J, Hydrogen. Fuel Cells and Infrastructure Technologies Program: Multiyear Research, Development and Demonstration Plan[J]. Publication date: 2007-10-01 <http://www.eere.energy.gov/hydrogen and fuel cells/mypp> accessed 2015-08-23

[7]

Umegaki T, Yan JM, Zhang XB, et al. Boron- and Nitrogen-based Chemical Hydrogen Storage Materials[J]. Int. J. Hydrogen Energy, 2009, 34(5): 2 303-2 311.

[8]

Wang Y, Qiao SZ, Wang X. Electrochemical Hydrogen Storage Properties of Ball-milled NdMg12 Alloy with Ni Powders[J]. Int. J. Hydrogen Energy, 2008, 35: 1 023-1 027.

[9]

Wang Y, Qiao SZ, Wang X. Electrochemical Hydrogen Storage Properties of the Ball-milled PrMg12-xNix+150wt% Ni(x=1 and 2) Composites[J]. Int. J. Hydrogen Energy, 2008, 33(19): 5 066-5 0672.

[10]

Zaluska A, Zaluski L, Ström-Olsen JO. Nanocrystalline Magnesium for Hydrogen Storage[J]. J. Alloys Compd., 1999, 288(1-2): 217-2125.

[11]

Jain IP, Lal C, Jain A. Hydrogen Storage in Mg: A Most Promising Material[J]. Int. J. Hydrogen Energy, 2010, 35(10): 5 133-5 144.

[12]

Gennari FC, Esquivel MR. Structural Characterization and Hydrogen Sorption Properties of Nanocrystalline Mg2Ni[J]. J. Alloys Compd., 2008, 459(1-2): 425-432.

[13]

Spassov T, Lyubenova L, Köster U, et al. Mg-Ni-Re Nanocrystalline Alloys for Hydrogen Storage[J]. Mater. Sci. Eng. A, 2004, 375-377: 794-799.

[14]

Wirth E, Milcius D, Filiou C, et al. Exploring the Hydrogen Sorption Capacity of Mg-Ni Powders Produced by the Vapour Deposition Technique[J]. Int. J. Hydrogen Energy, 2008, 33(12): 3 122-3 127.

[15]

Révész Gajdics M, Varga LK, et al. Hydrogen Storage of Nanocrystalline Mg-Ni Alloy Processed by Equal-channel Angular Pressing and Cold Rolling[J]. Int. J. Hydrogen Energy, 2014, 39(18): 9 911-9 917.

[16]

Gu H, Zhu YF, Li LQ. Effect of La/Ni Ratio on Hydrogen Storage Properties of Mg-Ni-La System Prepared by Hydriding Combustion Synthesis Followed by Mechanical Milling[J]. Int. J. Hydrogen Energy, 2008, 33(12): 2 970-2 974.

[17]

Poletaev AA, Denys RV, Maehlen JP, et al. Nanostructured Rapidly Solidified LaMg11Ni Alloy: Microstructure, Crystal Structure and Hydrogenation Properties[J]. Int. J. Hydrogen Energy, 2012, 37(4): 3 548-3 557.

[18]

Zhang QA, Jiang CJ, Liu DD. Comparative Investigations on the Hydrogenation Characteristics and Hydrogen Storage Kinetics of Meltspun Mg10NiR (R = La, Nd, and Sm) Alloys[J]. Int. J. Hydrogen Energy, 2012, 37(14): 10 709-10 714.

[19]

Wang Y, Wang X, Li CM. Electrochemical Hydrogen Storage of Ballmilled MmMg12 Alloy-Ni Composites[J]. Int. J. Hydrogen Energy, 2010, 35(8): 3 550-3 554.

[20]

Abdellaoui M, Mokbli S, Cuevas F, et al. Structural and Electrochemical Properties of Amorphous Rich MgxNi100-x Nanomaterial Obtained by Mechanical Alloying[J]. J. Alloys Compd., 2003, 356-357: 557-561.

[21]

Denys RV, Poletaev AA, Solberg JK, et al. LaMg11 with a Giant Unit Cell Synthesized by Hydrogen Metallurgy: Crystal Structure and Hydrogenation Behavior[J]. Acta. Mater., 2010, 58(7): 2 510-2 519.

[22]

Denys RV, Poletaeu AA, Maehlen JP, et al. Nanostructured Rapidly Solidified LaMg11Ni Alloy. In Situ Synchrotron X-Ray Diffraction Studies of Hydrogen Absorption-desorption Behaviours[J]. Int. J. Hydrogen Energy, 2012, 37(7): 5 710-5 722.

[23]

Teresiak A, Gebert A, Savyak M, et al. In Situ High Temperature XRD Studies of the Thermal Behaviour of the Rapidly Quenched Mg77Ni18Y5 Alloy under Hydrogen[J]. J. Alloys Compd., 2005, 398(1-2): 156-164.

[24]

Zhao XY, Ding Y, Ma LQ, et al. Electrochemical Properties of MmNi3.8 Co0.75Mn0.4Al0.2 Hydrogen Storage Alloy Modified with Nanocrystalline Nickel[J]. Int. J. Hydrogen Energy, 2008, 33(22): 6 727-6 733.

[25]

Zheng G, Popov BN, White RE. Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution[J]. J. Electrochem. Soc., 1995, 142(8): 2 695-2 698.

[26]

Kuriyama N, Sakai T, Miyamura H, et al. Electrochemical Impedance and Deterioration Behavior of Metal Hydride Electrodes[J]. J. Alloys Compd., 1993, 202(1-2): 183-197.

[27]

Zhang YH, Li C, Cai Y, et al. Highly Improved Electrochemical Hydrogen Storage Performances of the Nd-Cu-added Mg2Ni-type Alloys by Melt Spinning[J]. J. Alloys Compd., 2014, 584: 81-86.

[28]

Anik M, Karanfil F, Küçükdeveci N. Development of the High Performance Magnesium Based Hydrogen Storage Alloy[J]. Int. J. Hydrogen Energy, 2012, 37(1): 99-308.

[29]

Sadhasivam T H M, Pandey SK, et al. Effects of Nano Size Mischmetal and Its Oxide Onimproving the Hydrogen Sorption Behaviour of MgH2[J]. Int. J. Hydrogen Energy, 2013, 38(18): 7 353-7 362.

[30]

Laidler KJ. A Glossary of Terms Used in Chemical Kinetics, Including Reaction Dynamics[J]. Pure Appl. Chem., 1996, 68(1): 149-192.

[31]

Avrami M. Kinetics of Phase Change: General Theroy[J]. J. Chem. Phys., 1939, 7: 1 103-1 112.

[32]

Fernández JF, Sánchez CR. Simultaneous TDS-DSC Measurements in Magnesium Hydride[J]. J. Alloys Compd., 2003, 356-357: 348-352.

[33]

Kissinger HE. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem., 1957, 29(11): 1 702-1 706.

[34]

Baricco M, Rahman MW, Livraghi S, et al. Effects of BaRuO3 Addition on Hydrogen Desorption in MgH2[J]. J. Alloys Compd., 2012, 536S: S216-S221.

[35]

Xie DH, Li P, Zeng CX, et al. Effect of Substitution of Nd for Mg on the Hydrogen Storage Properties of Mg2Ni Alloy[J]. J. Alloys Compd., 2009, 478(1-2): 96-102.

[36]

Song MY, Yim CD, Kwon SN, et al. Preparation of Mg-23.5Ni-10(Cu or La) Hydrogen-storage Alloys by Melt Spinning and Crystallization Heat Treatment[J]. Int. J. Hydrogen Energy, 2008, 33(1): 87-92.

[37]

Anik M. Electrochemical Hydrogen Storage Capacities of Mg2Ni and MgNi Alloys Synthesized by Mechanical Alloying[J]. J. Alloys Compd., 2010, 491(1-2): 565-570.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/