Effect of spray parameters on the splashing of plasma-sprayed cast iron particles

Yazhe Xing , Xinghang Li , Yong Zhang , Chaoping Jiang , Weiwei Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 399 -403.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 399 -403. DOI: 10.1007/s11595-016-1382-z
Metallic Materials

Effect of spray parameters on the splashing of plasma-sprayed cast iron particles

Author information +
History +
PDF

Abstract

To understand the effects of spray parameters on the splashing, cast iron particles were plasma-sprayed onto polished surfaces of aluminum substrate to form single splats. Various plasma arc powers and spray distances were applied to adjust the morphology of the splats which was studied using a field emission scanning electron microscope (FESEM). The experimental results showed that the splashing of impinging droplets was significantly restrained for the splats deposited with high arc power (30 kW) and short spray distance (80 mm). This finding would be beneficial to improving the adhesive strength of the coating.

Keywords

plasma spraying / cast iron / splat morphology / splashing

Cite this article

Download citation ▾
Yazhe Xing, Xinghang Li, Yong Zhang, Chaoping Jiang, Weiwei Zhang. Effect of spray parameters on the splashing of plasma-sprayed cast iron particles. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(2): 399-403 DOI:10.1007/s11595-016-1382-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kuroda S, Clyne TW. The Quenching Stress in Thermally Sprayed Coatings[J]. Thin Solid Films, 1991, 200: 49-66.

[2]

McPherson R. The Relationship between the Mechanism of Formation, Microstructure and Properties of Plasma Sprayed Coatings[J]. Thin Solid Films, 1981, 83: 297-310.

[3]

Bianchi L, Grimaud A, Blein F, et al. Comparison of Plasma-sprayed Alumina Coatings by RF and DC Plasma Spraying[J]. J. Therm. Spray Technol., 1995, 4: 59-66.

[4]

Montavon G, Sampath S, Berndt CC, et al. Effects of Vacuum Plasma Spray Processing Parameters on Splat Morphology[J]. J. Therm. Spray Technol., 1995, 4: 67-74.

[5]

Vardelle M, Vardelle A, Leger AC, et al. Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes[J]. J. Therm. Spray Technol., 1995, 4: 50-58.

[6]

Li CJ, Li JL, Wang WB, et al. Coddet C, et al. Effect of Particle-substrate Materials Combinations on Morphology of Plasma Sprayed Splats[C]. Thermal Spray: Meeting the Challenges of the 21st Century, 1998 481-486.

[7]

Moreau C, Gougeon P, Lamontagne M. Influence of Substrate Preparation on the Flattening and Cooling of Plasma-sprayed Particles [J]. J. Therm. Spray Technol., 1995, 4: 25-33.

[8]

Amada S, Imagawa K, Aoki S. Splat Profile of Impinging Droplets on Rough Substrates: Influence of Surface Roughness[J]. Surf. Coat. Technol., 2002, 154: 27-33.

[9]

Raessi M, Mostaghimi J, Bussmann M. Effect of Surface Roughness on Splat Shapes in the Plasma Spray Coating Process[J]. Thin Solid Films, 2006, 506-507: 133-135.

[10]

Fukumoto M, Yokoyama T, Oku K, et al. Optimization of Substrate Preheating Condition on Adhesive Strength of Thermal Sprayed Coating[J]. J. High Temp. Soc., 1997, 23: 240-246.

[11]

Barbezat G. Advanced Thermal Spray Technology and Coating for Lightweight Engine Blocks for the Automotive Industry[J]. Surf. Coat. Technol., 2005, 200: 1990-1993.

[12]

Morks MF, Tsunekawa Y, Fahim NF, et al. Microstructure and Friction Properties of Plasma Sprayed Al-Si Alloyed Cast Iron Coatings[J]. Mater. Chem. Phys., 2006, 96: 170-175.

[13]

Dyshlovenko S, Pateyron B, Pawlowski L, et al. Numerical Simulation of Hydroxyapatite Powder Behaviour in Plasma Jet[J]. Surf. Coat. Technol., 2004, 179: 110-117.

[14]

Shinoda K, Liang S, Sampath S, et al. Processing Effects on In-flight Particle State and Functional Coating Properties of Plasma-sprayed Manganese Zinc Ferrite[J]. Mater. Sci. Eng. B, 2011, 176: 22-31.

[15]

Xiong HB, Zheng LL, Li L, et al. Melting and Oxidation Behavior of In-flight Particles in Plasma Spray Process[J]. Int. J. Heat Mass Trans., 2005, 48: 5121-5133.

[16]

Guo HB, Kuroda S, Murakami H. Microstructures and Properties of Plasma-sprayed Segmented Thermal Barrier Coatings[J]. J. Am. Ceram. Soc., 2006, 89: 1432-1439.

[17]

Samadi H, Pershin L, Coyle TW. Effect of In-flight Particle Properties on Deposition of Air Plasma Sprayed Forsterite[J]. Surf. Coat. Technol., 2010, 204: 3300-3306.

[18]

Li CJ, Li JL. Evaporated-gas-induced Splashing Model for Splat Formation during Plasma Spraying[J]. Surf. Coat. Technol., 2004, 184: 13-23.

[19]

Li CJ, Li CX, Yang GJ, et al. Examination of Substrate Surface Melting-induced Splashing during Splat Formation in Plasma Spraying [J]. J. Therm. Spray Technol., 2006, 15: 717-724.

[20]

Xing Y, Jiang C, Hao J, et al. Numerical Analysis on Substrate Melting during Plasma-spraying Cast Iron on Aluminum Surface[J]. Rev. Adv. Mater. Sci., 2013, 33: 276-280.

[21]

Zhang H, Wang XY, Zheng LL, et al. Studies of Splat Morphology and Rapid Solidification during Thermal Spraying[J]. Int. J. Heat. Mass. Transfer, 2001, 44: 4579-4592.

[22]

Ahmed AM, Rangel RH. Metal Droplet Deposition on Non-flat Surfaces: Effect of Substrate Morphology[J]. Int. J. Heat. Mass. Transfer, 2002, 45: 1077-1091.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/