Interaction of rare earth ions in Sr2MgSi2O7: Eu2+, Dy3+ material

Ou Hai , Hongyi Jiang , Dong Xu , Yahui Wang , Wei Zheng , Ting Luo

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 269 -273.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 269 -273. DOI: 10.1007/s11595-016-1363-2
Advanced Materials

Interaction of rare earth ions in Sr2MgSi2O7: Eu2+, Dy3+ material

Author information +
History +
PDF

Abstract

To discuss the function of Eu and Dy and their interaction in Sr2MgSi2O7: Eu2+, Dy3+ long afterglow material, the Eu and Dy single doped and their co-doped Sr2MgSi2O7: Eu2+, Dy3+ were prepared. The samples were characterized by X-ray diffraction (XRD), decay curves, photoluminescence (PL), and thermoluminescence (TL). The results indicate that Sr2MgSi2O7: Eu has afterglow properties, and the doping of Eu ion in Sr2MgSi2O7: Eu2+, Dy3+ can lower the depth of traps. Eu ion can not only serve as luminescence center, but also produce traps in the matrix, meanwhile, it also exerts certain influences on the traps produced by Dy in Sr2MgSi2O7: Eu2+, Dy3+. The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2MgSi2O7 matrix.

Keywords

phosphors / afterglow properties / luminescence traps / Sr2MgSi2O7: Eu2+ / Dy3+

Cite this article

Download citation ▾
Ou Hai, Hongyi Jiang, Dong Xu, Yahui Wang, Wei Zheng, Ting Luo. Interaction of rare earth ions in Sr2MgSi2O7: Eu2+, Dy3+ material. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(2): 269-273 DOI:10.1007/s11595-016-1363-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Matsuzawa T, Aoki Y, Takeuchi N, et al. New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+, Dy3+[J]. J. Electrochem. Soc., 1996, 143(8): 2670-2673.

[2]

Lin Y, Tang Z, Zhang Z, et al. Preparation of a New Long Afterglow Blue-emitting Sr2MgSi2O7-based Photoluminescent Phosphor[J]. J. Mater. Sci. Lett., 2001, 20(16): 1505-1506.

[3]

Carlson S, Hölsä J, Laamanen T, et al. X-ray Absorption Study of Rare Earth Ions in Sr2MgSi2O7: Eu2+, R3+ Persistent Luminescence Materials[J]. Opt. Mater., 2009, 31(12): 1877-1879.

[4]

Su Q, Li C, Wang J. Some Interesting Phenomena in the Study of Rare Earth Long Lasting Phosphors[J]. Opt. Mater., 2014, 36(11): 1894-1900.

[5]

Clabau F, Rocquefelte X, Jobic S, et al. Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+[J]. Chem. Mater., 2005, 17: 3904-3912.

[6]

Katsumata T, Nabae T, Sasajima K, et al. Growth and Characteristics of Long Persistent SrAl2O4-and CaAl2O4-based Phosphor Crystals by a Floating Zone Technique[J]. J. Crystal Growth, 1998, 183(3): 361-365.

[7]

Wu H, Hu Y, Wang Y, et al. Influence on the Long Afterglow Properties by the Environmental Temperature[J]. J. Lumin., 2010, 130(1): 127-130.

[8]

Ji T, Jiang H, Chen F. Afterglow Phosphor Materials Y2O2S: Eu, Mg, Ti Doped with Various Gd Concentrations[J]. J. Alloys Compd., 2010, 502(1): 180-183.

[9]

Wu H, Hu Y, Chen L, et al. Investigation on the Enhancement and the Suppression of Persistent Luminescence of Re3+ Doped Sr2EuMgSi2O7 (Re = Dy, Yb)[J]. J. Alloys Compd., 2011, 509(11): 4304-4307.

[10]

Wu H, Hu Y, Wang Y, et al. Influence on Luminescent Properties of the Sr2MgSi2O7: Eu2+ by Dy3+, Nd3+ Co-doping[J]. J. Alloys Compd., 2009, 486: 549-553.

[11]

Hölsä J, Aitasalo T, Jungner H, et al. Role of Defect States in Persistent Luminescence Materials[J]. J. Alloys Compd., 2004, 374: 56-59.

[12]

Shi C, Fu Y, Liu B, et al. The Roles of Eu2+ and Dy3+ in the Blue Longlasting Phosphor Sr2MgSi2O7: Eu2+, Dy3+ [J]. J. Lumin., 2007, 122: 11-13.

[13]

Brito H F, Hassinen J, Hölsä J, et al. Optical Energy Storage Properties Of Sr2MgSi2O7: Eu2+, R3+ Persistent Luminescence Materials[J]. J. Therm. Anal. Calorim., 2011, 105(2): 657-662.

[14]

Aitasalo T, Hassinen J H J, et al. Synchrotron Radiation Investigations of the Sr2MgSi2O7: Eu2+, R3+ Persistent Luminescence Materials[J]. J Rare Earth., 2009, 27(4): 529-538.

[15]

Wu H, Hu Y, Wang Y, et al. Influence on the Luminescence Properties of the Lattice Defects in Sr2MgSi2O7: Eu2+, M (M = Dy3+, La3+ or Na1+)[J]. J. Alloys Compd., 2010, 497: 330-335.

[16]

Hassinen J, Hölsä J, Laamanen T, et al. Electronic Structure of Defects in Sr2MgSi2O7: Eu2+, La3+ Persistent Luminescence Material[J]. J. Non-Cryst. Solid., 2010, 356: 2015-2019.

[17]

Kimata M. The Structural Properties of Synthetic Sr-åkermanite, Sr2MgSi2O7[J]. Z. Kristallogr., 1983, 163: 295-304.

[18]

Ran P, Li C, Jiang L, et al. Blue Long Lasting Phosphorescence Of Tm3+ In Zinc Pyrophosphate Phosphor[J]. J. Alloys Compd., 2009, 471(1-2): 364-367.

[19]

Suchinder K S, Shreyas S P M M M, et al. Luminescence Studies on the Blue-green Emitting Sr4Al14O25: Ce3+ Phosphor Synthesized through Solution Combustion Route[J]. J. Lumin., 2009, 129(2): 140-147.

[20]

Forsythe EW, Morton DC, Tang CW, et al. Trap States of Tris-8-(hydroxyquinoline) Aluminum and Naphthyl-substituted Benzidine Derivative using Thermally Stimulated Luminescence[J]. Appl. Phys. Lett., 1998, 73(11): 1457-1459.

[21]

Jahan M S, Cooke D W, Hults W L, et al. Thermally Stimulated Luminescence From Commonly Occuring Impurity Phases in Hightemperature Superconductors[J]. J. Lumin., 1990, 47: 85-91.

[22]

Hai O, Jiang HY, Xu D, et al. Effect of Pulverizing Process on the Luminescence Properties of Sr2MgSi2O7: Eu2+, Dy3+ [J]. Eur. Phys. J. Appl. Phys., 2015, 71: 30503.

[23]

Wu H, Hu Y, Chen L, et al. Enhancement on the Afterglow Properties of Sr2MgSi2O7: Eu2+ by Er3+ Codoping[J]. Mater. Lett., 2011, 65(17-18): 2676-2679.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/