Fabrication and photocatalytic activity of Ag3PO4-TiO2 heterostructural nanotube arrays

Yanping Mo , Feng Chen , Yunyun Yang , Jia Song , Qiong Xu , Ying Xu

Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 236 -241.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2016, Vol. 31 ›› Issue (2) : 236 -241. DOI: 10.1007/s11595-016-1358-z
Advanced Materials

Fabrication and photocatalytic activity of Ag3PO4-TiO2 heterostructural nanotube arrays

Author information +
History +
PDF

Abstract

To extend the absorption capability of TiO2 into visible light region and inhibit the recombination of photogenerated electrons and holes, we put forward an effective strategy of the coupling of TiO2 with a suitable semiconductor that possesses a narrow band gap. Meanwhile, Ag3PO4-TiO2 heterostructural nanotube arrays were prepared by the two-step anodic oxidation to obtain the TiO2 nanotube arrays and then by a deposition-precipitation method to load Ag3PO4. The samples were characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The experimental results showed that Ag3PO4 nanoparticles were uniformly dispersed on the highly ordered TiO2 nanotube arrays, which increased the visible-light absorption of TiO2 photocatalyst. The photocurrent density and photocatalytic degradation of methyl orange indicated that the performance of Ag3PO4-TiO2 heterostructural nanotube arrays was better than that of the TiO2 nanotube arrays, which could be attributed to the effective electron-hole separation and the improved utilization of visible light.

Keywords

Ag3PO4-TiO2 nanotube arrays / anodic oxidation / heterostructure / photocatalysis

Cite this article

Download citation ▾
Yanping Mo, Feng Chen, Yunyun Yang, Jia Song, Qiong Xu, Ying Xu. Fabrication and photocatalytic activity of Ag3PO4-TiO2 heterostructural nanotube arrays. Journal of Wuhan University of Technology Materials Science Edition, 2016, 31(2): 236-241 DOI:10.1007/s11595-016-1358-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang P, Wang J, Ming TS, et al. Dye-sensitization-induced Visible-light Reduction of Graphene Oxide for the Enhanced TiO2 Photocatalytic Performance[J]. ACS Appl. Mater. Interface, 2013, 5: 2924-2929.

[2]

Yin SM, Yang M, Yan YW. Preparation of V-doped TiO2 Photocatalysts by the Solution Combustion Method and Their Visible Light Photocatalysis Activities[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 36: 5863-868.

[3]

Zhang QH, an X, Shao R, et al. Preparation of Nano-TiO2 by Liquid Hydrolysis and Characterization of Its Antibacterial Activity[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 36: 2407-409.

[4]

Albu SP, Kim D, Schmuki P. Growth of Aligned TiO2 Bamboo-type Nanotubes and Highly Ordered Nanolace[J]. Angew. Chem., 2008, 120: 101942-1945.

[5]

Macák JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 Nanotubes by Anodization of Titanium[J]. Angew. Chem., 2005, 44: 142100-2102.

[6]

Guan DS, Hymel PJ, Wang Y. Growth Mechanism and Morphology Control of Double-layer and Bamboo-type TiO2 Nanotube Arrays by Aanodic Oxidation[J]. Electrochimica Acta, 2012, 83: 0420-429.

[7]

Lin J, Guo M, Yip CT, et al. High Temperature Crystallization of Freestanding Anatase TiO2 Nanotube Membranes for High Efficiency Dyesensitized Solar Cells[J]. Adv. Funct. Mater., 2013, 23: 475952-5960.

[8]

Shrestha NK, Macak JM, Schmidt-Stein F, et al. Magnetically Guided Titania Nanotubes for Site-selective Photocatalysis and Drug Release[J]. Angew. Chem., 2009, 48: 5969-972.

[9]

Liu N, Lee K, Schmuki P. Reliable Metal Deposition into TiO2 Nanotubes for Leakage-free Interdigitated Electrode Structures and Use as a Memristive Electrode[J]. Angew. Chem., 2013, 52: 4712381-12384.

[10]

Lee K, Hahn R, Altomare M, et al. Intrinsic Au Decoration of Growing TiO2 Nanotubes and Formation of a High-efficiency Photocatalyst for H2 Production[J]. Adv. Mater., 2013, 25: 426133-426137.

[11]

Li XH, Chen GY, Yang LB, et al. Multifunctional Au-coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection[J]. Adv. Funct. Mater., 2010, 20: 172815-172824.

[12]

Fujishima A, Zhang XT, Tryk DA. TiO2 Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008, 63: 12515-12582.

[13]

Wang P, Wang J, Wang XF, et al. One-step Synthesis of Easy-recycling TiO2-rGO Nanocomposite Photocatalysts with Enhanced Photocatalytic Activity[J]. Appl. Catal. B: Environ., 2013, 132-133: 452-459.

[14]

Zhao ZG, Liu ZF, Miyauchi M. Nature-inspired Construction, Characterization, and Photocatalytic Properties of Single-crystalline Tungsten Oxide Octahedra[J]. Chem. Comm., 2010, 46: 193321-3323.

[15]

Li GL, Liang W, Xue JB, et al. Electrochemical Preparation and Photoelectric Properties of Cu2O-loaded TiO2 Nanotube Arrays [J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 36: 23-28.

[16]

Yi ZG, Ye JH, Kikugawa N, et al. An Orthophosphate Semiconductor with Photooxidation Properties under Visible-light Iirradiation[J]. Nat. Mater., 2010, 9: 7559-7564.

[17]

Bi YP, Ouyang SX, Cao JY, et al. Facile Synthesis of Rhombic Dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) Heterocrystals with Enhanced Photocatalytic Properties and Stabilities[J]. Phys. Chem. Chem. Phys., 2011, 13: 2110071-2110075.

[18]

Bi YP, Hu HY, Ouyang SX, et al. Photocatalytic and Photoelectric Properties of Cubic Ag3PO4 Sub-microcrystals with Sharp Corners and Edges[J]. Chem. Comm., 2012, 48: 313748-313750.

[19]

Yu HG, Cao GQ, Chen F, et al. Enhanced Photocatalytic Performance of Ag3PO4 by Simultaneous Loading of Ag nanoparticles and Fe(III) Cocatalyst[J]. Appl. Catal. B: Environ., 2014, 160-161: 0658-665.

[20]

Ma XG, Lu B, Li D, et al. Origin of Photocatalytic Activation of Silver Orthophosphate from Ffirst-principles[J]. J. Phys. Chem. C, 2011, 115: 114680-114687.

[21]

Umezawa N, Ouyang SX, Ye JH. Theoretical Study of High Photocatalytic Performance of Ag3PO4[J]. Phys. Rev. B, 2011, 83(3): 79-83.

[22]

Yu HG, Liu R, Wang XF, et al. Enhanced Visible-light Photocatalytic Activity of Bi2WO6 Nanoparticles by Ag2O Cocatalyst[J]. Appl. Catal. B: Environ., 2012, 111-112: 0326-333.

[23]

Yu HG, Liu L, Wang XF, et al. The Dependence of Photocatalytic Activity and Photoinduced Self-stability of Photosensitive AgI Nanoparticles[J]. Dalton Trans., 2012, 41(34): 10405-10411.

[24]

Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-chlorophenol and Ppentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors[J]. J. Photochem. and Photobiol. A, 1995, 85: 3247-3255.

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/