Visible light-induced Cr-doped SrTiO3-g-C3N4 composite for improved photocatalytic performance

Ming Yang , Xiaoqi Jin

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (6) : 1111 -1116.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (6) : 1111 -1116. DOI: 10.1007/s11595-014-1051-z
Advanced Materials

Visible light-induced Cr-doped SrTiO3-g-C3N4 composite for improved photocatalytic performance

Author information +
History +
PDF

Abstract

Novel visible light-induced Cr-doped SrTiO3-g-C3N4 composite photocatalysts were synthesized by introducing polymeric g-C3N4. The composite photocatalyst was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence (PL) spectroscopy and BET surface area measurements. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange (MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. The optimal g-C3N4 content for the photodegradation activity of the composite photocatalysts was determined. The as-prepared composite photocatalyst exhibits an improved photocatalytic activity due to enhancement of photo-generated electron-hole separation at the interface.

Keywords

photocatalysis / g-C3N4 / Cr-doped SrTiO3 / composite

Cite this article

Download citation ▾
Ming Yang, Xiaoqi Jin. Visible light-induced Cr-doped SrTiO3-g-C3N4 composite for improved photocatalytic performance. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(6): 1111-1116 DOI:10.1007/s11595-014-1051-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tank CM, Sakhare YS, Kanhe NS, . Electric Field Enhanced Photocatalytic Properties of TiO2 Nanoparticles Immobilized in Porous Silicon Template[J]. Solid State Sci., 2011, 13: 1 500-1 504.

[2]

Dholam R, Patel N, Adami M, . Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-Doped TiO2 Composite Thin Films Photocatalyst[J]. Int. J. Hydrogen Energy, 2009, 34: 5 337-5 346.

[3]

Domen K, Kudo A, Onishi T Photocatalytic Decomposition of Water into Hydrogen and Oxygen over Nickel(II) Oxide-Strontium Titanate (SrTiO3) Powder. 1. Structure of the Catalysts[J]. J. Phys. Chem., 1986, 90: 292-295.

[4]

Wang JS, Yin S, Komatsu M, . Preparation and Characterization of Nitrogen Doped SrTiO3 Photocatalyst[J]. J. Photochem. Photobiol., A, 2004, 165: 149

[5]

Umebayashi T, Yamaki T, Itoh H, . Analysis of Electronic Structures of 3d Transition Metal-Doped TiO2 Based on Band Calculations[J]. J. Phys. Chem. Solids, 2002, 63: 1 909-1 920.

[6]

Yu H, Ouyang SX, Yan SC, . Sol-Gel Hydrothermal Synthesis of Visible-Light-Driven Cr-Doped SrTiO3 for Efficient Hydrogen Production[J]. J. Mater. Chem., 2011, 21: 11 347-11 351.

[7]

Osterloh FE Inorganic Materials as Catalysts for Photochemical Splitting of Water[J]. Chem. Mater., 2008, 20: 35-54.

[8]

Lin XP, Xing JC, Wang WD, . Photocatalytic Activities of Heterojunction Semiconductors Bi2O3/BaTiO3: A Strategy for the Design of Efficient Combined Photocatalysts[J]. J. Phys. Chem. C, 2007, 111: 18 288-18 293.

[9]

Wang XC, Maeda K, Thomas A, . A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009, 8: 76-80.

[10]

Yan HJ, Yang HX TiO2-g-C3N4 Composite Materials for Photocatalytic H2 Evolution under Visible Light Irradiation[J]. J. Alloys Compd., 2011, 509: L26-L29.

[11]

Yan SC, Lv SB, Li ZS, . Organic-Inorganic Composite Photo-catalyst of g-C3N4 and TaON with Improved Visible Light Photocatalytic Activities[J]. Dalton Trans., 2010, 39: 1 488-1491.

[12]

Ge L, Han CC, Liu J Novel Visible Light-Induced g-C3N4/Bi2WO6 Composite Photocatalysts for Efficient Degradation of Methyl Orange[J]. Appl. Catal. B: Environ., 2011, 108-109: 100-107.

[13]

Xiang QJ, Yu JG, Jaroniec M Preparation and Enhanced Visible-Light Photo-catalytic H2-Production Activity of Graphene/C3N4 Composites[J]. J. Phys. Chem. C, 2011, 115: 7 355-7 363.

[14]

Li XH, Chen JS, Wang XC, . Metal-Free Activation of Dioxygen by Graphene/g-C3N4 Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons[J]. J. Am. Chem. Soc., 2011, 133: 8 074-8 077.

[15]

Pan CS, Xu J, Wang YJ, . Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly[J]. Adv. Funct. Mater., 2012, 22: 1 518-1 524.

[16]

Ge L, Han CC Synthesis of MWNTs/g-C3N4 Composite Photocatalysts with Efficient Visible Light Photocatalytic Hydrogen Evolution Activity[J]. Appl. Catal. B: Environ., 2012, 117–118: 268-274.

[17]

Kang HW, Lim SN, Song DS, . Organic-Inorganic Composite of g-C3N4-SrTiO3: Rh Photocatalyst for Improved H2 Evolution under Visible Light Irradiation[J]. Inter. J. Hydro. Energy, 2012, 37: 11 602-11 610.

[18]

Liu W, Wang ML, Xu CX, . Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties[J]. Chem. Engineering J., 2012, 209: 386-393.

[19]

Wang YJ, Wang ZX, Muhammad S, . Graphite-Like C3N4 Hybridized ZnWO4 Nanorods: Synthesis and Its Enhanced Photocatalysis in Visible Light[J]. CrystEngComm, 2012, 14: 5 065-5 070.

[20]

Fu J, Tian YL, Chang BB, . BiOBr-Carbon Nitride Heterojunctions: Synthesis, Enhanced Activity and Photocatalytic Mechanism[J]. J. Mater. Chem., 2012, 22: 21 159-21 166.

[21]

Yan SC, Li ZS, Zou ZG Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25: 10 397-10 401.

[22]

Tan S, Yue S, Zhang Y Jahn-Teller Distortion Induced by Mg/Zn Substitution On Mn Sites In The Perovskite Manganites[J]. Physics Letters A, 2003, 319: 530

[23]

Yan SC, Li ZS, Zou ZG Photodegradation of Rhodamine B and Methyl Orange over Boron-Doped g-C3N4 under Visible Light Irradiation[J]. Langmuir, 2010, 26: 3 894-3 901.

[24]

Yang M, Huang Q, Jin XQ ZnGaNO Solid Solution-C3N4 Composite for Improved Visible Light Photocatalytic Performance[J]. Materials Science and Engineering B, 2012, 177: 600-605.

[25]

Yoon SH, Lee JH Oxidation Mechanism of As(III) in the UV/TiO2 System: Evidence for a Direct Hole Oxidation Mechanism[J]. Environ. Sci. Technol., 2005, 39: 9 695-9 701.

[26]

Liu GG, Li XZ, Zhao JC, . Photooxidation Mechanism of Dye Alizarin Red in TiO2 Dispersions under Visible Illumination: An Experimental and Theoretical Examination[J]. J. Mol. Catal. A: Chem., 2000, 153: 221-229.

[27]

Kato H, Kudo A Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium[J]. J. Phys. Chem. B, 2002, 106: 5 029-5 034.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/