Effects of mechanical alloying parameters on the microstructures of nanocrystalline Cu-5 wt% Cr alloy

Kunyu Shi , Lihong Xue , Youwei Yan , Tao Shen

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 192 -195.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 192 -195. DOI: 10.1007/s11595-013-0663-z
Metallic Materials

Effects of mechanical alloying parameters on the microstructures of nanocrystalline Cu-5 wt% Cr alloy

Author information +
History +
PDF

Abstract

Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA). The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu-5 wt%Cr alloys were investigated including type and size distribution of the grinding medium and ball-topowder weight ratio (BPR). The results show that the crystallites were refined effectively and solid solubility of Cr in Cu was extended when heavier ball and higher BPR were adopted. The maximum solubility is extended up to 5.6 at% (namely 4.6 wt%) Cr in Cu by use of a combination of large and small size WC-Co balls with BPR of 30:1. A Cu-5 wt%Cr supersaturated solid solution alloy bulk is obtained by spark plasma sintering the as-milled powders at 900 °C for 5 min.

Keywords

mechanical alloying / Cu-Cr alloys / nanocrystalline / solid solubility

Cite this article

Download citation ▾
Kunyu Shi, Lihong Xue, Youwei Yan, Tao Shen. Effects of mechanical alloying parameters on the microstructures of nanocrystalline Cu-5 wt% Cr alloy. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 192-195 DOI:10.1007/s11595-013-0663-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morris M. A., Morris D. G. Microstructures and Mechanical Properties of Rapidly Solidified Cu-Cr Alloys[J]. Acta Metall., 1987, 35(10): 2 511-2 522.

[2]

Stobrawa J., Ciura L., Rdzawski Z. Rapidly Solidified Strips of Cu-Cr Alloys[J]. Scr. Mater., 1996, 34(11): 1 759-1 763.

[3]

Suryanarayana C. Mechanical Alloying and Milling[J]. Prog. Mater. Sci., 2001, 46: 1-184.

[4]

Wang Y. P., Ding B. J. The Preparation and the Properties of Microcrystalline and Nanocrystalline CuCr Contact Materials[J]. IEEE Trans. on CPMT, 1999, 22(2): 467-472.

[5]

Fu G. Y., Niu Y., Gesmundo F. Microstructural Effects on the High Temperature Oxidation of Two-phase Cu-Cr Alloys in 1 atm O2[J]. Corros. Sci., 2003, 45(3): 559-574.

[6]

Lahiri I., Bhargava S. Compaction and Sintering Response of Mechanically Alloyed Cu-Cr Powder[J]. Powder Technol., 2009, 189(3): 433-438.

[7]

Paris S., Gaffet E., Bernard F., . Spark Plasma Synthesis from Mechanically Activated Powders: a Versatile Route for Producing Dense Nanostructured Iron Aluminides[J]. Scr. Mater., 2004, 50: 691-696.

[8]

Xia L., Ding H., Shi Y. X., . Fabrication of Dense Ultrafine TiAl Alloys by Spark Plasma Synthesis from Mechanically Activiated Powders[J]. J. Wuhan University of Tech. -Mat. Sci. Ed., 2007, 22(3): 408-411.

[9]

Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys[M], 1967 Oxford Pergamon

[10]

Cullity B. D., Stock S. R. Elements of X-ray Diffraction[M], 2001 Indiana Addison-Wesley

[11]

Gavrilov D., Vinogradov O., Shaw W. J. D. Simulation of Grinding in a Shaker Ball Mill[J]. Powder Technol., 1999, 101: 63-72.

[12]

Huang J. Y., Wu Y. K., He A. Q., . Direct Evidence of Nanocrystal Enhanced Complete Mutual Solubility in Mechanically Alloyed CoCu Powders[J]. Nanostruct. Mater., 1994, 4: 293-302.

[13]

Aguilar C., Martinez V. d. P., Palacios J. M., . A Thermodynamic Approach to Energy Storage on Mechanical Alloying of the Cu-Cr System[J]. Scr. Mater., 2007, 57: 213-216.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/