Microstructure and flow stress of Mg-12Gd-3Y-0.5Zr magnesium alloy

Shaojie Ma , Ying Liu , Xuehua Dong , Xinping Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 172 -177.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 172 -177. DOI: 10.1007/s11595-013-0660-2
Metallic Materials

Microstructure and flow stress of Mg-12Gd-3Y-0.5Zr magnesium alloy

Author information +
History +
PDF

Abstract

The microstructure and flow stress of the Mg-12Gd-3Y-0.5Zr magnesium alloy was investigated by compression test at temperatures ranging from 350 to 500 °C and the strain rates ranging from 0.01 to 20 s−1. The flow stress of the magnesium alloy increased with strain rate and decreased with deformation temperature. Flow stress can be expressed in terms of the Zener-Hollomon parameter Z, which describes the combined influence of the strain rate and temperature using an Arrhenius function.The values of the deformation activation energy were estimated to be 245.9 and 171.5 kJ/mol at deformation temperatures below 400 °C and above 400 °C, respectively. Two constitutive equations were developed to quantify the effect of the deformation conditions on the flow stress of the magnesium alloy. The effects of deformation temperature and strain rate on the microstructure of the magnesium alloy were also examined and quantified by measuring the volume fraction of dynamically recrystallized grain X d. X d increased with increasing of deformation temperature. When the deformation temperature was below 475 °C, X d decreased with strain rate until it reached 0.15 s−1, then it increased again. When the deformation temperature was above 475 °C, X d increased with strain rate.

Keywords

magnesium alloy / flow stress / hot compression / dynamic recrystallization

Cite this article

Download citation ▾
Shaojie Ma, Ying Liu, Xuehua Dong, Xinping Zhang. Microstructure and flow stress of Mg-12Gd-3Y-0.5Zr magnesium alloy. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 172-177 DOI:10.1007/s11595-013-0660-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nie J. F., Oh-ishi K., Gao X., . Solute Segregation and Precipitation in a Creep-resistant Mg-Gd-Zn Alloy[J]. Acta Mater., 2008, 56(20): 6 061-6 076.

[2]

Wu D., Chen R. S., Han E. H. Excellent Room-temperature Ductility and Formability of Rolled Mg-Gd-Zn Alloy Sheets[J]. J. Alloys Compd., 2011, 509(6): 2 856-2 863.

[3]

Yang Z., Guo Y. C., Li J. P., . Plastic Deformation and Dynamic Recrystallization Behaviors of Mg-5Gd-4Y-05Zn-05Zr Alloy[J]. Mater. Sci. Eng. A, 2008, 485: 487-491.

[4]

Wang Q. D., Lin J. B. Microstructure and Mechanical Properties of Mg-10Gd-2Y-05Zr Alloy Recycled by Cyclic Extrusion Compression[J]. Mater. Sci. Eng. A, 2009, 516(1–2): 23-30.

[5]

Zhu R., Wu Y. J., Liu J. Q., . Microstructure and Properties of Mg-12Gd-3Y-0.5Zr Alloys Processed by ECAP and Extrusion[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(6): 1 128-1 132.

[6]

Zhang X P, Wang J T. The Flow Stress During Hot Compression Deformation of a Mg-Gd-Y-Zr Magnesium Alloy: Experiments and Numerical Simulations[C]. Magnesium Technology Symposium, 2008

[7]

Roberts W. L. Hot Rolling of Steel[M], 1983 New York Marcel Dekker Inc

[8]

Qin Y. J., Pan Q. L., He Y. B., . Modeling of Flow Stress Considering Dynamic Recrystallization for Magnesium Alloy ZK60[J]. Mater. Manuf. Process., 2010, 25: 527-533.

[9]

Zhang X. P., Yang T. H., Liu J. Q., . Mechanical Properties of an Al/Mg/Al Trilaminated Composite Fabricated by Hot Rolling[J]. J. Mater. Sci., 2010, 45: 3 457-3 464.

[10]

Anonym. http://www.engineeringtoolbox.com/specific-heat-metalsd152html[OL]

[11]

Kim H., Sung J., Goodwin F. E., . Investigation of Galling in Forming Galvanized Advanced High Strength Steels (AHSSs) Using the Twist Compression Test (TCT)[J]. J. Mater. Process. Technol., 2008, 205: 459-468.

[12]

Hodowany J., Ravichandran G., Rosakis A. J., . Partition of Plastic Work into Heat and Stored Energy in Metals[J]. Exp. Mech., 2000, 40(2): 113-123.

[13]

Smallman R. E., Bishop R. J. Modern Physical Metallurgy and Materials Engineering [M], 2002 Oxford Butterworth-Heinemann

[14]

Kuhn H., Medlin D. ASM Metals Handbook Vol 08 — Mechanical Testing and Evaluation[M], 2010 OH ASM International

[15]

Fatemi-Varzaneh S. M., Zarei-Hanzaki A., Beladi H. Dynamic Recrystallization in AZ31 Magnesium Alloy[J]. Mater. Sci. Eng. A, 2007, 456(1–2): 52-57.

[16]

Li D. J., Wang Q. D., Blandinc J. J., . High Temperature Compressive Deformation Behavior of an Extruded Mg-8Gd-3Y-05Zr (wt%) Alloy[J]. Mater. Sci. Eng. A, 2009, 526(1–2): 150-155.

[17]

Frost H. J., Ashby M. F. Deformation-mechanism Maps [M], 1982 Oxford Pergamon Press

[18]

Morris J. R., Scharff J., Ho K. M., . Prediction of a 〈1122〉 Hcp Stacking Fault Using a Modified Generalized Stacking-fault Calculation[J]. Philos. Mag. A, 1997, 76: 1 065-1 077.

[19]

Koike J., Kobayashi T., Mukai T. The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-grained AZ31B Magnesium Alloys[J]. Acta Mater., 2003, 51(7): 2 055-2 065.

[20]

Prasad Y. V. R. K., Rao K. P. Effect of Homogenization on the Hot Deformation Behavior of Cast AZ31 Magnesium Alloy[J]. Mater. Des., 2009, 30: 3 723-3 730.

[21]

He S. M., Zeng X. Q., Peng L. M., . Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-05Zr Alloy[J]. J. Alloys Compd., 2007, 427: 316-323.

[22]

Maksouda I. A., Ahmed H., Rödel J. Investigation of the Effect of Strain Rate and Temperature on the Deformability and Microstructure Evolution of AZ31 Magnesium Alloy[J]. Mater. Sci. Eng. A, 2009, 504(1–2): 40-48.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/