The drug-carrier interactions, release behaviors and cell responses of hydroxyapaptite containing several Chinese medicines

Sunzhong Lin , Shuxin Qu , Lina Chang , Yuehua Guo , Ke Duan , Jie Weng

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 163 -171.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 163 -171. DOI: 10.1007/s11595-013-0659-8
Biomaterials

The drug-carrier interactions, release behaviors and cell responses of hydroxyapaptite containing several Chinese medicines

Author information +
History +
PDF

Abstract

The present work shows drug-carrier interactions, release behaviors and cell responses of hydroxyapatite (HA) containing salvianolic acid B (Sal B), astragalus polysaccharide (APS), and naringin. X-ray diffraction (XRD) showed that the crystallinity and crystal size of HA decreased significantly when Sal B was added (p<0.05). Transmission electron microscope (TEM) confirmed that the nano-acicular crystals of HA containing Sal B were the most fine among all specimens. It was conjectured that Sal B preferentially adsorbed on the positively charged surface of HA crystals to inhibit their growth. In vitro release of HA containing Chinese medicines followed the first-order equation. The drug-carrier affinity between HA and Sal B might have prolonged the release of Sal B. The proliferation and differentiation of osteoblasts were promoted by Chinese medicines containing HA in the time and dosage dependent manner. The osteoblasts displayed a polygonal morphology with cell-cell junctions in all cases. It is suggested that the contained Chinese medicines would promote the activities of the osteoblasts.

Keywords

hydroxyapatite / chinese medicines / crystallinity / crystal size / drug release / cell response

Cite this article

Download citation ▾
Sunzhong Lin, Shuxin Qu, Lina Chang, Yuehua Guo, Ke Duan, Jie Weng. The drug-carrier interactions, release behaviors and cell responses of hydroxyapaptite containing several Chinese medicines. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 163-171 DOI:10.1007/s11595-013-0659-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dorozhkin S. V. Calcium Orthophosphates in Nature, Biology and Medicine[J]. Materials, 2009, 2: 399-498.

[2]

Jain A. K., Panchagnula R. Skeletal Drug Delivery Systems[J]. Int. J. Pharm., 2000, 206: 1-12.

[3]

Boonsongrit Y., Abe H., Sato K., . Controlled Release of Bovine Serum Albumin from Hydroxyapatite Microspheres for Protein Delivery System[J]. Mater. Sci. Eng. B, 2008, 148: 162-165.

[4]

Otsuka M., Nakahigashi Y., Matsuda Y., . A Novel Skeletal Drug Delivery System Using Self-Setting Calcium Phosphate Cement VIII: the Relationship between In Vitro and In Vivo Drug Release from Indomethacin-Containing Cement[J]. J. Control. Release, 1997, 43: 115-122.

[5]

Itokazu M., Yang W., Aoki T., . Synthesis of Antibiotic-Loaded Interporous Hydroxyapatite Blocks by Vacuum Method and In Vitro Drug Release Testing[J]. Biomaterials, 1998, 19: 817-819.

[6]

Santos C., Rovath C. F., Franke R. P., . Spray-Dried Hydroxyapatite-5-Fluorouracil Granules as a Chemotherapeutic Delivery System[J]. Ceram. Int., 2009, 35: 509-513.

[7]

Kilian O., Fuhrmann R., Alt V., . Plasma Transglutaminase Factor XIII Induces Microvessel Ingrowth into Biodegradable Hydroxyapatite Implants in Rats[J]. Biomaterials, 2005, 26: 1 819-1 827.

[8]

Wong R. W. K., Rabie A. B. M. Traditional Chinese Medicines and Bone Formation-A Review[J]. J. Oral. Maxillofac. Surg., 2006, 64: 828-837.

[9]

Cheng J. T. Drug Therapy in Chinese Traditional Medicine[J]. J. Clin. Pharmacol., 2000, 40: 445-450.

[10]

Cho W. C. S., Leung K. N. In Vitro and In Vivo Immunomodulating and Immunorestorative Effects of Astragalus Membranaceus[J]. J. Ethnopharmacol, 2007, 113: 132-141.

[11]

Liu Y. R., Qu S. X., Maitz M. F., . The Effect of the Major Components of Salvia Miltiorrhiza Bunge on Bone Marrow Cells[J]. J. Ethnopharmacol., 2007, 111: 573-583.

[12]

Xu C. J., Jian X. C., Guo F., . Effect of Astragalus Polysaccharides on the Proliferation and Ultrastructure of Dog Bone Marrow Stem Cells Induced into Osteoblasts In Vitro[J]. West China Journal of Stomatology, 2007, 25: 432-436.

[13]

Zhang P., Dai K. R., Yan S. G., . Effects of Naringin on the Proliferation and Osteogenic Differentiation of Human Bone Mesenchymal Stem Cell[J]. Eur. J. Pharmacol., 2009, 607: 1-5.

[14]

Lin F. H., Don G. C., Chen K. S., . Immobilization of Chinese Herbal Medicine onto the Surface-Modified Calcium Hydrogenphosphate, Biomaterials[J]. Biomaterials, 2003, 24: 2 413-2 422.

[15]

Sun J. S., Dong G. C., Lin C. Y., . The Effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) Immobilized Modified Calcium Hydrogenphosphate on Bone Cell Activities[J]. Biomaterials, 2003, 24: 873-882.

[16]

Yao C. H., Tsai H. M., Chen Y. S., . Fabrication and Evaluation of a New Composite Composed of Tricalcium Phosphate, Gelatin, and Chinese Medicine as a Bone Substitute [J]. J. Biomed. Mater. Res. Part B, 2005, 75: 277-288.

[17]

Qu S. X., Weng J., Feng B., . Preliminary Study of Calcium Phosphate Immobilized With Chinese Medicine[J]. J. Mater. Sci., 2005, 40: 3 035-3 037.

[18]

Yu X. H., Qu S. X., Liu Y. R., . Investigation on the In Vitro Degradation and Release Behaviors of Calcium Phosphate Containing Chinese Medicine[J]. Key. Eng. Mater., 2005, 284–286: 395-398.

[19]

Li M. H., Qu S. X., Shen R., . Study on Synthesis of Calcium Phosphate Biomaterials Containing SMB[J]. Key. Eng. Mater., 2007, 330–332: 1 033-1 036.

[20]

Matsumoto T., Okazaki M., Inoue M., . Crystallinity and Solubility Characteristics of Hydroxyapatite Adsorbed Amino Acid[J]. Biomaterials, 2002, 23: 2 241-2 247.

[21]

Ginebra M. P., Traykova T., Planell J. A. Calcium Phosphate Cements as Bone Drug Delivery Systems: A Review[J]. J. Controlled. Release, 2006, 23: 102-110.

[22]

Balasundaram G., Sato M., Webster T. J. Using Hydroxyapatite Nanoparticles and Decreased Crystallinity to Promote Osteoblast Adhesion Similar to Functionalizing With RGD[J]. Biomaterials, 2006, 27: 2 798-2 805.

[23]

Pang Y. X., Bao X. Influence of Temperature, Ripening Time and Calcination on the Morphology and Crystallinity of Hydroxyapatite Nanoparticles[J]. J. Eur. Ceram. Soc., 2003, 23: 1 697-1 704.

[24]

Xu H. H. K., Carey L. E., Simon C. G. Jr, . Premixed Calcium Phosphate Cements: Synthesis, Physical Properties, and Cell Cytotoxicity[J]. Dent. Mater., 2007, 23: 433-441.

[25]

Murugan R., Ramakrishna S. Aqueous Mediated Synthesis of Bioresorbable Nanocrystalline Hydroxyapatite[J]. J. Cryst. Growth, 2005, 274: 209-213.

[26]

Vallet-Regí M., González-Calbet J. M. Calcium Phosphates as Substitution of Bone Tissues[J]. Prog. Solid. State. Chem., 2004, 32: 1-31.

[27]

Madhumathia K., Shalumona K. T., DivyaRania V. V., . Wet Chemical Synthesis of Chitosan Hydrogel-Hydroxyapatite Composite Membranes for Tissue Engineering Applications[J]. Int. J. Biol. Macromol., 2009, 45: 12-15.

[28]

LeGeros R. Z. Calcium Phosphates in Oral Biology and Medicine[J]. Monographs in Oral Science, 1991, 15: 46-201.

[29]

Liu C. S., Huang Y., Shen W., . Kinetics of Hydroxyapatite Precipitation at pH 10 to 11[J]. Biomaterials, 2001, 22: 301-306.

[30]

Gilman H., Hukins D. W. Seeded Growth of Hydroxyapatite in the Presence of Dissolved Albumin at Constant Composition[J]. J. Inorg. Biochem., 1994, 55: 31-39.

[31]

Long J. R., Dindot J. L., Zebroski H., . A Peptide that Inhibits Hydroxyapatite Growth is in an Extended Conformation on the Crystal Surface[J]. Proc. Natl. Acad. Sci., 1998, 95: 12 083-12 087.

[32]

Nordstrom T., Senkas A., Eriksson S., . Generation of a New Protein Purification Matrix by Loading Ceramic Hydroxyapatite With Metal Ions-Demonstration With Poly-Histidine Tagged Green Fluorescent Protein[J]. J. Biotechnol., 1999, 69: 125-133.

[33]

Chen M. F., Tan J. J., Lian Y. Y., . Preparation of Gelatin Coated Hydroxyapatite Nanorods and the Stability of Its Aqueous Colloidal [J]. Appl. Surf. Sci., 2008, 254: 2 730-2 735.

[34]

Li T., Feng Y. Q. Biomimetic Fabrication of Hydroxyapatite-Coated Zirconia-Magnesia Composite and Its Application in the Separation of Proteins[J]. Talanta., 2009, 80: 889-894.

[35]

Fujisawa R, Kuboki Y. Preferential Adsorption of Dentin and Bone Acidic Proteins on the (100) Face of Hydroxyapatite Crystals[J]. Biochim. Biophys. Acta, 1991 (1 075): 56–60

[36]

Zhang H. P., Lu X., Leng Y., . Molecular Dynamics Simulations on the Interaction between Polymers and Hydroxyapatite with and without Coupling Agents[J]. Acta. Biomater., 2009, 5: 1 169-1 181.

[37]

Otsuka M., Matsuda Y., Suwa Y., . A Novel Skeletal Drug-Delivery System Using Self-Setting Calcium Phosphate Cement. 3: Physcicochemical Properties and Drug-Release Rate of Bovine Insulin and Bovine Albumin[J]. J. Pharm. Sci., 1994, 83: 255-258.

[38]

Burgos A. E., Belchior J. C., Sinisterra R. D. Controlled Release of Rhodium (II) Carboxylates and Their Association Complexes with Cyclodextrins from Hydroxyapatite Matrix[J]. Biomaterials, 2002, 23: 2 519-2 526.

[39]

Narasimhan B., Langer R. Zero-Order Release of Micro- and Macromolecules from Polymeric Devices: The Role of the Burst Effect[J]. J. Control. Release, 1997, 47: 13-20.

[40]

Wang L. R., Zhang Q. The Study of Dipivefrin Hydrochloride Ophthalmic Gel[J]. J. Chin. Pharmaceu. Sci., 2001, 10: 128-132.

[41]

Otsuka M., Matsuda Y., Fox J. L., . A Novel Skeletal Drug Delivery System Using Self-Setting Calcium Phosphate Cement. 9: Effects of the Mixing Solution Volume on Anticancer Drug Release from Homogeneous Drug-Loaded Cement[J]. J. Pharm. Sci., 1995, 84: 733-736.

[42]

Khairuzzaman A., Ahmed S. U., Savva M., . Zero-Order Release of Aspirin, Theophylline and Atenolol in Water from Novel Methylcellulose Glutarate Matrix Tablets[J]. Int. J. Pharm., 2006, 318(1–2): 15-21.

[43]

Dong G. C., Sun J. S., Yao C. H., . The Effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) on Bone Cells Activities[J]. Biomaterials, 2001, 22: 3 179-3 189.

[44]

Moreau J. L., Xu H. H. K. Mesenchymal Stem Cell Proliferation and Differentiation on an Injectable Calcium Phosphate-Chitosan Composite Scaffold[J]. Biomaterials, 2009, 30: 2 675-2 682.

[45]

Lodish H., Berk A., Zipursky S. L., . Molecular Cell Biology[M], 2000 New York Freeman and Company

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/