Biodegradation and mechanical property of polylactic acid/thermoplastic starch blends with poly (ethylene glycol)

Ping Xue , Kejian Wang , Mingyin Jia , Meijuan Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 157 -162.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 157 -162. DOI: 10.1007/s11595-013-0658-9
Biomaterials

Biodegradation and mechanical property of polylactic acid/thermoplastic starch blends with poly (ethylene glycol)

Author information +
History +
PDF

Abstract

The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TPS blended with increasing content PEG exhibited lower temperature of glass transition (T g) and lower temperature of melting (T m) as well as higher melt flow index (MFI), which indicates the plasticization and processability of the composites were dramatically improved. The tensile strength, flexural strength and izod impact strength of PLA/TPS (80/20) increased at first and then decreased with increasing content of PEG due to stronger interfacial adhesion. The optimized mechanical property can be obtained for the blend with 3 wt % PEG. The samples containing PEG after soil burial for 5 months showed quicker degradation being accompanied with large weight loss and mechanical properties loss.

Keywords

biodegradation / mechanical property / polylactic acid / starch

Cite this article

Download citation ▾
Ping Xue, Kejian Wang, Mingyin Jia, Meijuan Yang. Biodegradation and mechanical property of polylactic acid/thermoplastic starch blends with poly (ethylene glycol). Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 157-162 DOI:10.1007/s11595-013-0658-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shah A. A., Hasan F., Hameed A., . Biological Degradation of Plastics: a Comprehensive Review[J]. Biotechnol. Adv., 2008, 26(3): 246-265.

[2]

Wang N., Yu J. G., Ma X. F. Preparation and Characterization of Thermoplastic Starch/PLA Blends by One-step Reactive Extrusion[J]. Polym. Int., 2007, 56(5): 1 440-1 447.

[3]

Kozlowski M., Masirek R., Piorkowska E., . Biodegradable Blends of Poly(L-lactide) and Starch[J]. J. Appl. Polym. Sci., 2007, 105(1): 269-277.

[4]

Kulinski Z., Piorkowska E. Crystallization, Structure and Properties of Plasticized Poly(L-lactide) [J]. Polymer, 2005, 46(3): 10 290-10 300.

[5]

Gajria A. M., Dave V., Gross R. A., . Miscibility and Biodegradability of Blends of Poly (lactic acid) and Poly (vinyl acetate)[J]. Polymer, 1996, 37(3): 437-444.

[6]

Nijenhuis A. J., Colstee E., Grijpma D. W., . High Molecular Weight Poly (L-lactide) and Poly (ethylene oxide) Blends: Thermal Characterization and Physical. Polymer, 1996, 37(26): 5 849-5 857.

[7]

Sheth M., Kumar R. A., Dave V., . Biodegradable Polymer Blends of Poly (lactic acid) and Poly (ethylene glycol) [J]. J. Appl. Polym. Sci., 1997, 66(8): 1 495-1 505.

[8]

Focarete M. L., Ceccourulli G., Scandola M., . Further Evidence of Crystallinity-Induced Biodegradation of Synthetic Atactic Poly(3-hydroxybutyrate) by PHB-Depolymerase a from Pseudomonas lemoignei. Blends of Atactic Poly(3-hydroxybutyrate) with Crystalline Polyesters[J]. Macromolecules, 1998, 31(24): 8 485-8 492.

[9]

Wang H., Sun X. Z., Seib P. Effects of Starch Moisture on Properties of Wheat Starch/Poly(lactic acid) Blends Containing Methylene Diphenyl Diisocyanate[J]. J. Polym. Environ., 2002, 10(4): 133-138.

[10]

Zhang J. F., Sun X. Z. Mechanical Properties of Poly(lactic acid)/ starch Composites Compatibilized by Maleic Anhydride[J]. Biomacromolecules, 2004, 5(10): 1 446-1 451.

[11]

Wu C. S. Characterizing Biodegradability of Polylactide (PLA) or PLA-g-AA/starch Encapsulating Phosphate-solubilizing Bacterium Bacillus[J]. Macromoecularl Bioscencei, 2005, 5(5): 352-361.

[12]

Chen L., Qiu X. Y., Xie Z. G., . Poly(L-lactide)/starch Blends Compatibilized with Poly(L-lactide)-g-starch Copolymer[J]. Carbohydr. Polym., 2006, 65(1): 75-80.

[13]

Kim S. H., Chin I., Yoon J., . Mechanical Properties of Biodegradable Blends of Poly(l-lactic acid) and Starch[J]. Korea Polym. J., 1998, 6(5): 422-427.

[14]

Ke T., Sun X. Physical Properties of Poly(lactic acid) and Starch Composites with Various Blending Ratios[J]. Cereal. Chem., 2000, 77(6): 761-768.

[15]

Martin O., Averous L. Poly(lactic acid): Plasticization and Properties of Biodegradable Multiphase Systems[J]. Polymer, 2001, 42(14): 6 209-6 219.

[16]

Baiardo M., Frisoni G., Scandola M., . Thermal and Mechanical Properties of Plasticized Poly(L-lactic acid) [J]. J. Appl. Polym. Sci., 2003, 90(7): 1 731-1 738.

[17]

Hu Y., Hu Y. S., Topolkaraev V., . Aging of Poly(lactide)/ poly(ethylene glycol) Blends. Part 1. Poly(lactide) with Low Stereoregularity[J].Polymer, 2003, 44(14): 5 701-5 710.

[18]

Itävaara M., Karjomaa S., Selin J. Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions[J]. Chemosphere, 2002, 46(6): 879-885.

[19]

Calmon A., Guillaume S., Bellon-Maurel V., . Evaluation of Material Biodegradability in Real Conditions-development of a Burial Test and an Analysis Methodology Based on Numerical Vision[J]. J. Environ. Polym. Degrad., 1999, 7(3): 157-166.

[20]

Osawa S., Tsukegi T., Ogawa T., . Biodegradation Behavior of Molded Poly(l-lactic acid)/starch Blend in a Land-fill Test[J]. Materials Life, 2000, 12(4): 199-205.

[21]

Kozlowski M., Masirek R., Piorkowska E., . Biodegradable Blends of Poly(L-lactide) and Starch[J]. J. Appl. Polym. Sci., 2007, 105(1): 269-277.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/