Preparation of high molecular weight poly(L-lactide-co-caprolactone)(85-15)

Xuehui Zhan , Xiongjun Shen , Zhaohui Li , Xia Li , Fen Cao

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 139 -143.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 139 -143. DOI: 10.1007/s11595-013-0655-z
Organic Materials

Preparation of high molecular weight poly(L-lactide-co-caprolactone)(85-15)

Author information +
History +
PDF

Abstract

Poly(L-lactide-co-caprolactone)(85-15)[P(LLA-CL)(85-15)] was synthesized from high purity L-lactide and ɛ-caprolactone using tin octoate as initiator by ring-opening polymerization, and characterized by infrared spectrum and 1H-NMR spectrum. The synthesized P(LLA-CL)(85-15) is a random copolymer. The influences of polymerization temperature, polymerization time, dosage of initiator and polymerization pressure on the weight average molecular weight and the polydispersity index of P(LLA-CL)(85-15) were investigated. The optimum preparation conditions of P(LLA-CL) (85-15) are: the polymerization pressure is less than 0.5 Pa, the polymerization temperature is 130 °C, the n(M)/n(I) ratio is 8 000/1, and the polymerization time is 36 h. Under the condition, the weight-average molecular weight of prepared P(LLA-CL)(85-15) is 65.6×104, and molecular weight distribution coefficient is 1.15.

Keywords

poly(L-lactide-co-caprolactone)(85-15) / copolymerization / high molecular weight / characterization

Cite this article

Download citation ▾
Xuehui Zhan, Xiongjun Shen, Zhaohui Li, Xia Li, Fen Cao. Preparation of high molecular weight poly(L-lactide-co-caprolactone)(85-15). Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 139-143 DOI:10.1007/s11595-013-0655-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bos R. R., Rozema F. R., Boering G., . Degradation and Tissue Reaction to Biodegradable Poly(L-lactide) for Use as Internal Fixation of Fractures: a Study in Rats[J]. Biomaterials, 1991, 12(1): 32-36.

[2]

Tormala P., Vasenius J., Vainionpaa S., . Ultra-high-strength Absorbable Self-reinforced Polyglycolide(SR-PGA) Composite Rods for Internal Fixation of Bone Fractures: in Vitro and in Vivo Study[J]. Biomed. Mater. Res., 1991, 25(1): 1-22.

[3]

Pitt C. G., Gratzl M. M., Jeffcoat A. R., . Sustained Drug Delivery Systems. Part II. Factors Affecting Release Rates from Poly(ɛ-caprolactone) and Related Biodegradable Polyesters[J]. J. Pharm. Sci., 1979, 68: 1 534-1 538.

[4]

Den Dunnen W. F. A., Robinson P. H., Van Wessel R., . Longterm Evaluation of Degradation and Foreign-body Reaction of Subcutaneously Implanted Poly(D,L-lactide-e-caprolactone)[J]. J. Biomed. Mater. Res., 1997, 36: 337-346.

[5]

Athanasiou K. A., Yiederaner G. G., Agrawal C. M. Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/ Polyglycolic Acid Copolymers[J]. Biomaterials, 1996, 17: 93-102.

[6]

Ha J. H., Kim S. H., Han S. Y., . Albuminrelease from Bioerodible Hydrogels Based on Semi-interpenetrating Polymer Networks Composed of Poly(ɛ-caprolactone) and Poly(ethylene glycol) Macromer[J]. J. Control. Rel., 1997, 49: 253-262.

[7]

Bezwada R. S., Jamiolkowski D. D., Lee I., . Monocryl® Suture, a New Ultra-pliable Absorbable Monofilament Suture[J]. Biomaterials, 1995, 16: 1 141-1 148.

[8]

Duda A., Biela T., Libiszowski J., . Block and Random Copolymers of ɛ-Caprolactone[J]. Polymer Degradation and Stability, 1998, 59: 215-222.

[9]

Ye W. P., Du F. S., Jin W. H., . In Vitro Degradation of Poly(caprolactone), Poly(lactide) and Their Block Copolymers: Influence of Composition, Temperature and Morphology[J]. Reactive and Functional Polymers, 1997, 32(2): 161-168.

[10]

Holland S. J., Tighe B. J., Gould P. L. Polymers for Biomedical Devices 1. The Potential of Polyesters as Controlled Macromolecular Release Systems[J]. J. Control. Rel., 1986, 4: 155-180.

[11]

Pitt C. G., Gratzl M. M., Kimmel G. L., . The Degradation of Poly (D,L-lactide), Poly(ɛ-caprolactone) and Their Copolymers in Vitro[J]. Biomaterials, 1981, 2: 215-220.

[12]

Malin M., Hilyanen-Vaino M., Karjalainen T., . Biodegradable Lactone Copolymers II. Hydrolytic Study of ɛ-Caprolactone and Lactide Copolymers[J]. J. Appl. Polym. Sci., 1996, 59: 1 289-1 298.

[13]

Hilyanen-Vaino M., Karjalainen T., Seppala J. Biodegradable Lactone Copolymers I. Characterization and Mechanical Behaviour of ɛ-Caprolactone and Lactide Copolymers[J]. J. Appl. Polym. Sci., 1996, 59: 1 281-1 288.

[14]

Zhang H.-p., Ruan J.-m., Zhou Z.-c., . Preparation of Monomer of Degradable Biomaterial Poly(L-lactid)[J]. J. Cent. South Univ. Technol., 2005, 12(3): 246-250.

[15]

Qian H. T., Bei J. Z., Wang S. G. Synthesis, Characterization and Degradation of ABA Block Copolymer of L-Lactide and ɛ-Caprolactone[J]. Polym. Degrad. Stabi., 2000, 68: 423-429.

[16]

Grijpma D. W., Pennings A. J. Polymerization Temperature Effects on the Properties of L-Lactide and ɛ-Caprolactone Copolymers[J]. Polym. Bull., 1991, 25: 335-341.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/