Properties of functionalized graphene/room temperature vulcanized silicone rubber composites prepared by an In-situ reduction method

Wenshi Ma , Ji Li , Bangjun Deng , Xiaodan Lin , Xusheng Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 127 -131.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 127 -131. DOI: 10.1007/s11595-013-0653-1
Organic Materials

Properties of functionalized graphene/room temperature vulcanized silicone rubber composites prepared by an In-situ reduction method

Author information +
History +
PDF

Abstract

Functionalized graphene oxide (FGO) was prepared by treating graphene oxide with γ-aminopropyl triethoxysilane (KH-550) before the mixture was dispersed into α, ω-dihydroxy polydimethylsiloxane to get room temperature vulcanized (RTV) silicone rubber composites by solution casting. The cured composites were then reduced with hydrazine hydrate to obtain functionalized graphene (FG)/RTV silicone rubber composites. The structures of FGO and the resultant composites were characterized by atomic force microscopy, FT-IR spectra and X-ray diffraction. KH-550 was found to be grafted onto graphene sheets, leading to an increased interlayer spacing. Significant improvements in thermal and mechanical properties were obtained. Both the FGO/RTV silicone rubber composite contain 1.0 wt% of FGO, and its reduced product showed an increase of one-step weight loss temperature with 61 °C and 133 °C higher than that of pure silicone rubber. Tensile strength and elongation at break of FG/RTV silicone rubber composite (with 0.5 wt% FGO content) increased by 175% and 67%, respectively, compared with those of pure silicone rubber.

Keywords

composites / rubber / mechanical properties

Cite this article

Download citation ▾
Wenshi Ma, Ji Li, Bangjun Deng, Xiaodan Lin, Xusheng Zhao. Properties of functionalized graphene/room temperature vulcanized silicone rubber composites prepared by an In-situ reduction method. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 127-131 DOI:10.1007/s11595-013-0653-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K. S., Geim A. K., Morozov S. V., . Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5296): 666-669.

[2]

Geim A. K., Novoselov K. S. The Rise of Graphene[J]. Nat. Mater., 2007, 6: 183-191.

[3]

Williams J. R., DiCarlo L., Marcus C. M. Quantum Hall Effect in a Gatecontrolled p-n Junction of Graphene[J]. Science, 2007, 317: 638-641.

[4]

Service R. F. Carbon Sheets an Atom Thick Give Rise to Graphene Dreams[J]. Science, 2009, 324: 875-877.

[5]

Kim K. S., Zhao Y., Jang H., . Large-scale Pattern of Graphene Films for Strethable Transparent Electrodes[J]. Nature, 2009, 457: 706-710.

[6]

Seol J. H., Jo I., Moore A. L., . Two-Dimensional Phonon Transport in Supported Graphene[J]. Science, 2010, 328(5975): 213-216.

[7]

Stankovich S., Piner R. D., Nguyen S. T., . Synthesis and Exfoliation of Isocyanate-treated Graphene Oxide Nanoplatelets[J]. Carbon, 2006, 44(15): 3 342-3 347.

[8]

Niyogi S., Bekyarova E., Itkis M. E., . Solution Properties of Graphite and Graphene[J]. J. Am. Chem. Soc., 2006, 128(24): 7 720-7 721.

[9]

Si Y. C., Samulski E. T. Synthesis of Water Soluble Graphene[J]. Nano Lett., 2008, 8: 1 679-1 682.

[10]

Shen J. F., Hu Y. Z., Li C., . Synthesis of Amphiphilic Graphene Nanoplatelets[J]. Small, 2009, 5: 82-85.

[11]

Salavagione H. J., Gomez M. A., Martinez G. Polymeric Modification of Graphene Through Esterification of Graphite Oxide and Poly(vinyl alcohol)[J]. Macromolecules, 2009, 42(17): 6 331-6 334.

[12]

Liang J., Wang Y., Huang Y., . Electromagnetic Interference Shielding of Graphene/Epoxy Composites[J]. Carbon, 2009, 47: 922-925.

[13]

Ramanathan T., Abdala A. A., Stankovich S., . Functionalized Graphene Sheets for Polymer Nanocomposites[J]. Nat. Nanotechnol., 2008, 96: 327-331.

[14]

Ansari S., Giannelis E. P. Functionalized Graphene Sheets-Poly(vinylidene fluoride) Conductive Nanocomposites[J]. J. Polym. Sci., 2009, 47: 888-897.

[15]

Yan J., Wei T., Fan Z. J., . Preparation of Graphene Nanosheet/ Carbon Nanotube/Polyaniline Composite as Electrode Material for Supercapacitors[J]. J. Power Sources, 2010, 195: 3 041-3 045.

[16]

Verdejo R., Barroso-Bujans F., Rodriguez-Perez M. A., . Functionalized Graphene Sheet Filled Silicone Foam Nanocomposites[J]. J. Mater. Chem., 2008, 18: 2 221-2 226.

[17]

Verdejo R., Saiz-Arroyo C., Carretero-Gonzalez J., . Physical Properties of Silicone Foams Filled with Carbon Nanotubes and Functionalized Graphene Sheets[J]. Eur. Polym. J., 2008, 44(7): 2 790-2 797.

[18]

Wang J., Han Z. D. The Combustion Behavior of Polyacrylate Ester/ Graphite Oxide Composites[J]. Polym. Adv. Technol., 2006, 17(4): 335-340.

[19]

Liu L., Tian M., Zhang W., . Crystallization and Morphology Study of Polyhedral Oligomeric Silsesquioxane (POSS)/Polysiloxane Elastomer Composites Prepared by Melt Blending[J]. Polymer, 2007, 48(11): 3 201-3 212.

[20]

Radhakrishnan T. S. New Method for Evaluation of Kinetic Parameters and Mechanism of Degradation From Pyrolysis-GC Studies: Thermal Degradation of Polydimethylsiloxanes[J]. J. Appl. Polym. Sci., 1999, 73: 441-450.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/