Dispersion of micro diamond particles in electroless nickel solution

Changhong Zhu , Yongwei Zhu

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 57 -61.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 57 -61. DOI: 10.1007/s11595-013-0640-6
Advanced Materials

Dispersion of micro diamond particles in electroless nickel solution

Author information +
History +
PDF

Abstract

The dispersion behavior of micro-diamond particles ranging from 0 to 0.5 micron was compared between in DI water and in electroless nickel solution. The effects of the concentration of electroless solution, temperature, ultrasonic treatment, stirring speed, and baffles on the size distribution of micro diamond particles in electroless nickel solution were studied. Results show that the dispersion of micro diamond particles in DI water is obviously superior to that in electroless nickel solution. Micro diamond particles agglomerate evidently when the concentration of electroless solution V elect:V DI in dispersion media exceeds 5‰. Diamond particles agglomerate more and more seriously with the increase of the ion concentration. Applying ultrasonic, increasing stirring speed and adding baffles are helpful to improving the dispersion of diamond particles in the electroless nickel solution and its uniform distribution in the Ni-P coating.

Keywords

micro-diamond particles / dispersion / electroless nickel solution / size distribution

Cite this article

Download citation ▾
Changhong Zhu, Yongwei Zhu. Dispersion of micro diamond particles in electroless nickel solution. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 57-61 DOI:10.1007/s11595-013-0640-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agarwala R. C., Agarwala V. Electroless Alloy/Composite Coatings: A Review[J]. Sahana, 2003, 28: 475-493.

[2]

Reddy V. V. N., Ramamoorthy B., Kesavan P. N. A Study on the Wear Resistance of Electroless Ni-P/Diamond Composite Coating[J]. Wear, 2000, 239: 111-116.

[3]

Apachitei I., Duszczyk J., Katgerman L., . Particles Co-deposition by Electroless Nickel[J]. Scripta Mater., 1998, 38(9): 1 383-1 389.

[4]

Natishan P. M., Everett R. K., Glesener J. W., . Electrochemical Behavior of Diamond-reinforced Composites[J]. Mater. Sci. and Eng., 1995, 197: 79-81.

[5]

Shrestha N. K., Takebe T., Saji T. Effect of Particle Size on the Codeposition of Diamond with Nickel in Presence of Redox-active Surfactant and Mechanical Property of the Coating[J]. Diamond & Relat. Mater., 2006, 15: 1 570-1 575.

[6]

Grosjean A., Rezrazi M., Takadoumb J., . Hardness, Friction and Wear Characteristics of Nickel-SiC Electroless Composite Deposits[J]. Surface and Coatings Technology, 2001, 237: 92-96.

[7]

Shrestha N. K., Hamal D. B., Saji T. Composite Plating of Ni-P-Al2O3 in Two Steps and Its Anti-wear Performance[J]. Sur.Coat.Technol., 2004, 183: 247-253.

[8]

D Kamman, V Komarov. Use of Core-and-shell and Core Ultradispersed Diamond (nanodiamond) for Strengthening, Polishing, and Lubrication[C]. Proc. Intertech., 2000

[9]

Chen Q., Yun S. Nano-sized Diamond Obtained from Explosive Detonation and Its Application[J]. Mater. Res. Bull., 2000, 35: 1 915-1 919.

[10]

Eidelman E. D., Siklitsky V. I., Sharonova L. V., . A Stable Suspension of Single Ultrananocrystalling Diamond Particles[J]. Diamond & Relat. Mater., 2005, 14: 1 765-1 769.

[11]

Kruger A., Kataoka F., Ozawa M., . Unusually Tight Aggregation in Detonation Nanodiamond: Indentification and Disintegration[J]. Carbon, 2006, 43: 1 722-1 730.

[12]

Uchida T., Hamano A., Kawashima N., . Improving Dispersion of Nanometer-size Diamond Particles by Acoustic Cavitation[J]. Ultrasonics, 2006, 44: 473-476.

[13]

Zhu Y. W., Xu X. Y., Wang B. C., . Surface Modification and Dispersion of Nanodiamond in Clean Oil[J]. China Particuology, 2004, 2(3): 132-134.

[14]

Zhu Y. W., Wang X. Q., Xu Y. X., . Chemical Mechanical Modification of Nanodiamond in an Aqueous System[J]. Phys. Solid State, 2004, 46(4): 681-684.

[15]

Xu X. Y., Yu Z. M., Zhu Y. W., . Effect of Sodium Oleate Adsorption on the Colloidal Stability and Zeta Potential of Detonating Synthesized Diamond Particles in Aqueous Solutions[J]. Diamond & Relat. Mater., 2005, 14: 206-212.

[16]

Xu X. Y., Zhu Y. W., Wang B. C., . Mechanochemical Dispersion of Nano Diamond Aggregates in Aqueous Media[J]. J. Mater. Sci. Technol., 2005, 21(1): 109-112.

[17]

Alirezaei S., Monirvaghefi S. M., Salehi M., . Wear Behavior of Ni-P and Ni-P-Al2O3 Electroless Coatings[J]. Wear, 2007, 262: 978-985.

[18]

Matsubara H., Abe Y., Chiba Y., . Co-deposition Mechanism of Nanodiamond with Electrolessly Plated Nickel Films[J]. Electrochim. Acta, 2006, 120: 1-6.

[19]

Mason T. J., Joyce E., Phull S. S., . Potential Uses of Ultrasound in the Biological Decontamination of Water[J]. Ultrason. Sonochem., 2003, 10: 319-323.

[20]

Chen Y. J. Two-phase Flow Simulation of Ni-P-diamond Electroless Composite Plating and Study on Its Plating Techniques[D], 2010 Nanjing: Nanjing University of Aeronautics and Astronautics.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/