Electronic band Gap of ZnO under triaxial strain

Guoqiang Qin , Guanglei Zhang , Jinhui Yang , Gang Yu , Hua Fu , Fengqiu Ji

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 48 -51.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 48 -51. DOI: 10.1007/s11595-013-0638-0
Advanced Materials

Electronic band Gap of ZnO under triaxial strain

Author information +
History +
PDF

Abstract

The effect of triaxial strains on the band gap of wurtzite ZnO has been investigated by the first principles calculations. The results indicate that, after application of triaxial strain, the wurtzite ZnO is still a direct band gap semiconductor with conduction- and valence-band minima remains at the Γ point. Comparing with the unstrained ZnO, the E g at Γ point increases under compressive strain but decreases under tensile strain. This triaxial strain model is in better agreement with the experimental results than the widely-employed in-plane biaxial strain model, thus providing a more accurate explanation on the behaviors of ZnO thin film under three-dimensional strain.

Keywords

first principles calculations / ZnO / strain / band gap

Cite this article

Download citation ▾
Guoqiang Qin, Guanglei Zhang, Jinhui Yang, Gang Yu, Hua Fu, Fengqiu Ji. Electronic band Gap of ZnO under triaxial strain. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 48-51 DOI:10.1007/s11595-013-0638-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qian Q., Tyson T. A., Deleon M., . Influence of Strain on the Atomic and Electronic Structure of Manganite Films[J]. J. Phys. Chem. Solids, 2007, 68: 458-463.

[2]

Jin M., Minor A. M., Morris J. W. Jr. Strain-induced Coarsening in Nanograined Films[J]. Thin Solid Films, 2007, 515: 3 202-3 207.

[3]

Qiu J. H., Jiang Q. Anisotropic in-plane Misfit Strains Dependence of Phase Diagrams and Dielectric Behavior in Epitaxial Pb(Zr1−xTix)O3 Thin Films[J]. Phys. Lett., 2007, A370: 82-89.

[4]

Chasiotis I., Bateson C., Timpano K., . Strain Rate Effects on the Mechanical Behavior of Nanocrystalline Au Films[J]. Thin Solid Films, 2007, 515: 3 183-3 189.

[5]

Liu Y. P., Du Y. S., Zhang M., . Effect of Internal Strain on Magnetic Properties of La0.7Sr0.3MnO3 Films[J]. Vacuum, 2007, 81: 826-829.

[6]

Zhang Y. Q., Qu J. F., Xiang X. Q., . Modulation of Supercon-Ductivity and Charge Stripes by Compressive Strain in La1.44Nd0.4Sr0.16CuO4 Films[J]. Physica C, 2007, 460–462: 1 388-1 389.

[7]

Nambara T., Yoshida K., Miao L., . Preparation of Strain-Included Rutile Titanium Oxide Thin Films and Influence of the Strain upon Optical Properties[J]. Thin Solid Films, 2007, 515: 3 096-3 101.

[8]

Antonakos A., Liarokapis E., Aydogdu G. H., . Strain Effects on La0.5Ca0.5MnO3 Thin Films[J]. Mat. Sci. Eng. B, 2007, 144: 83-88.

[9]

Wagner J. M., Bechstedt F. Properties of Strained Wurtzite GaN and AlN: Ab Initio Studies[J]. Phys. Rev. B, 2002, 66: 115

[10]

Gai Y. Q., Yao B., Lu Y. M., . Electronic and Optical Properties of ZnO Thin Film under in-plane Biaxial Strains: Ab Initio Calculation[J]. Phys. Lett. A, 2007, 372: 72-76.

[11]

Rabe K. M. Theoretical Investigations of Epitaxial Strain Effects in Ferroelectric Oxide Thin Films and Superlattices[J]. Curr. Opin. Solid St. M., 2005, 9: 122-127.

[12]

Marotti R. E., Guerra D. N., Bello C., . Bandgap Energy Tuning of Electrochemically Grown ZnO Thin Films by Thickness and Electrodeposition Potential[J]. Sol. Energ. Mat. Sol. C, 2004, 82: 85-103.

[13]

Milman V., Winkler B., White J. A., . Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Planewave Study[J]. Int. J.Quantum Chem., 2000, 77: 895-910.

[14]

Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77: 3 865-3 868.

[15]

Perdew J. P., Wang Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy[J]. Phys. Rev. B, 1992, 45: 13 244-13 249.

[16]

Baroni S., Gironcoli S. D., Corso A. D., . Phonons and Related Crystal Properties from Density-functional Perturbation Theory[J]. Rev. Mod. Phys., 2001, 73: 515-562.

[17]

Martin R. M. Electronic Structure Part 2[M], 2004 Cambridge: Cambridge University Press.

[18]

Hohenberg P., Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev. B, 1964, 136: 864-871.

[19]

Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41: 7 892-7 895.

[20]

Bagnall D. M., Chen Y. F., Zhu Z., . Optically Pumped Lasing of ZnO at Room Temperature[J]. Appl. Phys. Lett., 1997, 70: 2 230-2 232.

[21]

Liu C. S., Li Z. W., Zhang Q. F. Highly Oriented ZnO Rod Arrays on Si Substrates from Aqueous Solution[J]. J.Wuhan.Univ.Technol., 2008, 23(2): 189-193.

[22]

Lu Z. Y., He F. F., Xu P. C., . Effects of Heat-treatment Temperature on Eu3+ and Li+ Co-doped ZnO Photoluminescence by Sol-gel Process[J]. J. Wuhan. Univ.Technol. -Mater. Sci. Ed., 2008, 23(1): 20-23.

[23]

Lv J. G., Dai J. L., Zhu J. B., . Effect of Na Concentrations on Microstructure and Optical Properties of ZnO Films[J]. J.Wuhan. Univ. Technol. -Mater. Sci. Ed., 2011, 26(1): 23-27.

[24]

Ma S. F., Liang J., Liu X. G., . Growth Habit of Polar Crystal ZnO by Solid-vapor Method[J]. J.Wuhan.Univ.Technol.-Mater. Sci. Ed., 2011, 26(1): 19-22.

[25]

Cao A., Zhang Y., Ma F. C., . Fabrication and Photoluminescence Properties of Hexagonal Micro-pyramids ZnO Powders by Combustion Synthesis[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2011, 26(4): 700-702.

[26]

Li C., Guo W. L., Kong Y., . First-principles Study of the Dependence of Ground-state Structural Properties on the Dimensionality and Size of ZnO Nanostructures[J]. Phys. Rev. B, 2007, 76: 035322

[27]

Fan W. J., Xia J. B., Agus P. A., . Band Parameters and Electronic Structures of Wurtzite ZnO and ZnO/MgZnO Quantum Wells [J]. J. Appl. Phys., 2006, 99: 013702

[28]

Schleife A., Rodl C., Fuchs F., . Strain Influence on Valence-band Ordering and Excitons in ZnO: An Ab Initio Study[J]. Appl. Phys. L, 2007, 91: 241915

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/