One-pot synthesis of hollow octahedral Cu2O nanostructures at room temperature

Liwen Lei , Qi Zhang , Yu Zhang , Jinyong Zhang , Hao Wang , Zhengyi Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 40 -43.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2013, Vol. 28 ›› Issue (1) : 40 -43. DOI: 10.1007/s11595-013-0636-2
Advanced Materials

One-pot synthesis of hollow octahedral Cu2O nanostructures at room temperature

Author information +
History +
PDF

Abstract

Homogeneous hollow Cu2O octahedral nanostructures have been fabricated by a facile one-pot reduction reaction at room temperature. The microscope analysis revealed that the edges of as-prepared hollow structures were around 200 nm with a wall thickness of about 20 nm. To investigate the influence factors and formation mechanism of the hollow octahedral structure, samples subjected to different reaction conditions were studies. The results showed that the morphology and structures of Cu2O particles were greatly affected by the concentration of pH value of the reaction environment and the reaction time. Ostwald ripening process is proposed to explain the growth mechanism of the hollow octahedral nanostructures.

Keywords

nanoparticles / crystal growth / octahedral / hollow nanostructure

Cite this article

Download citation ▾
Liwen Lei, Qi Zhang, Yu Zhang, Jinyong Zhang, Hao Wang, Zhengyi Fu. One-pot synthesis of hollow octahedral Cu2O nanostructures at room temperature. Journal of Wuhan University of Technology Materials Science Edition, 2013, 28(1): 40-43 DOI:10.1007/s11595-013-0636-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Snoke D. Spontaneous Bose Coherence of Excitons and Polaritons [J]. Science, 2002, 298(5997): 1 368-1 372.

[2]

Ettema A., Versluis J. Dipole-allowed Generation of the Yellow-series Excitons in Cu2O due to an Applied Electric Field [J]. J. Phys. Rev. B, 2003, 68(23): 235 101-235 104.

[3]

Karpinska K., Mostovoy M., Van der Vegte M. A., . Decay and Coherence of Two-photon Excited Yellow Orthoexcitons in Cu2O [J]. Phys. Rev. B, 2005, 72(15): 155 201-155 210.

[4]

Lou X. W., Wang Y., Yuan C. L., . Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity[J]. Adv. Mater., 2006, 18(17): 2 325-2 329.

[5]

Chen J. Y., Wang D. L., Xi J. F., . Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells[J]. Nano. Lett., 2007, 7: 1 318-1 322.

[6]

Jiao S. H., Xu L. F., Jiang K. Well-Defi ned Non-spherical Copper Sulfi de Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating[J]. Adv. Mater., 2006, 18(9): 1 174-1 177.

[7]

Yang X. F., Fu J. X., Jin C. J., . Formation Mechanism of CaTiO3 Hollow Crystals with Different Microstructures[J]. J. Am. Chem. Soc., 2010, 132(40): 14 279-14 287.

[8]

Lu C. H., Qi L. M., Yang J. H., . One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J]. Adv. Mater., 2005, 17(21): 2 562-2 567.

[9]

Chen Z. Z., Shi E. W., Zheng Y. Q., . Growth of Hex-pod-like Cu2O Whisker under Hydrothermal Conditions[J]. J. Cryst. Growth, 2003, 249(1–2): 294-300.

[10]

Zhou B., Wang H. X., Liu Z. G., . Enhanced Photocatalytic Activity of Flowerlike Cu2O/Cu Prepared using Solvent-thermal Route [J]. Mater. Chem. Phy., 2011, 126(3): 847-852.

[11]

Xu H. L., Wang W. Z., Zhu W. Shape Evolution and Size-controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties[J]. J. Phys. Chem. B, 2006, 110(28): 13 829-13 834.

[12]

Lan X., Zhang J. Y., Gao H., . Morphology-controlled Hydrothermal Synthesis and Growth Mechanism of Microcrystal Cu2O[J]. Crystengcomm., 2011, 13(20): 633-636.

[13]

Banfield J. F., Welch S. A., Zhang H. Z., . Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products[J]. Science, 2000, 289(5480): 751-754.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/