Improvement of lithium interface stability with 1,4-dioxane pretreatment

Fei Ding , Xinguo Hu , Yuwen Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 494 -498.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 494 -498. DOI: 10.1007/s11595-006-3494-3
Article

Improvement of lithium interface stability with 1,4-dioxane pretreatment

Author information +
History +
PDF

Abstract

1,4-dioxane (DOA) was originally used to pretreat the lithium metal electrode in order to improve its interface stability. Electrochemical impedance spectra (EIS) measurements reveal that with DOA pretreatment, lithium electrode has a low and stable interfacial resistance during the storage in electrolyte for a long time. And it is also found that the pretreated lithium electrode has an improved interfacial performance in repeated charge/discharge cycles. Furthermore, it is proved by SEM that the pretreated one has smooth morphology after long-time storage or repeated charge/discharge cycles. Consequentially, because of more stable interface characteristics of lithium electrode, the rechargeable lithium cell with DOA pretreated lithium anode has an obviously enhanced discharging performance and a better cycleability, compared with that of the cell using the untreated lithium anode.

Keywords

lithium battery / interface film / stability / 1,4-dioxane / pretreatment / EIS

Cite this article

Download citation ▾
Fei Ding, Xinguo Hu, Yuwen Liu. Improvement of lithium interface stability with 1,4-dioxane pretreatment. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(3): 494-498 DOI:10.1007/s11595-006-3494-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yamaki J. I., Tobishima S. I., Hayashi K., . A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte[J]. J. Power Sources, 1998, 74: 219-227.

[2]

Aurbach D., Zinigrad E., Cohen Y., . A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions[J]. Solid State Ionics, 2002, 148: 405-416.

[3]

Wang X., Yasukawa E., Kasuya S. Electrochemical Properties of Tetrahydropyran-based Ternary Electrolytes for 4 V Lithium Metal Rechargeable Batteries[J]. Electrochimica Acta, 2001, 46: 813-819.

[4]

Ota H., Wang X. M., Yasukawa E. Characterization of Lithium Electrode in Lithium Imides/ Ethylene Carbonate, and Cyclic Ether Electrolytes[J]. J. Electrochem. Soc., 2004, 151: A427-A436.

[5]

Kanamura K., Takezawa H., Shiraishi S., . Chemical Reaction of Lithium Surface during Immersion in LiClO4 or LiPF6/DEC Electrolyte[J]. J. Electrochem. Soc., 1997, 144: 1 900-1 906.

[6]

Mogi R., Inaba M., Jeong S. K., . Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate[J]. J. Electrochem Soc., 2002, 149: A1 578-A1 583.

[7]

Ishikawa M., Machino S. I., Morita M. Electrochemical Control of a Li Metal Anode Interface: Improvement of Li Cycleability by Inorganic Additives Compatible with Electrolytes[J]. J. Electroanal. Chem., 1999, 473: 279-284.

[8]

Aurbach D. Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries[J]. J. Power Sources, 2000, 89: 206-218.

[9]

Churikov A. V., Nimon E. S., Lvov A. L. Impedance of Li-Sn, Li-Cd and Li-Sn-Cd Alloys in Propylene Carbonate Solution[J]. Electrochim. Acta, 1997, 42: 179-189.

[10]

Sakamoto J. S., Wudl F., Dunn B. Passivating Lithium Electrodes with Trimethylsilylacetylene[J]. Solid State Ionics, 2001, 144: 295-299.

[11]

Choi N. S., Lee Y. M., Park J. H., . Interfacial Enhancement between Lithium Electrode and Polymer Electrolytes[J]. J. Power Sources, 2003, 119–121: 610-616.

[12]

Li Q., Sun H. Y., Takeda Y., . Interface Properties between a Lithium Metal Electrode and a Poly(ethylene oxide) Based Composite Polymer Electrolyte[J]. J. Power Sources, 2001, 94: 201-205.

[13]

Granvalet-Manchini M. L. Teeters Dlae. The Effects of Chemical Composition of Absorbed Molecular Layers on Lithium Electrode/Polymer Electrolyte Interface Stabilization[J]. J. Power Sources, 2001, 97–98: 624-627.

[14]

Kim J. S., Yoon W. Y. Improvement in Lithium Cycling Efficiency by Using Lithium Powder Anode[J]. Electrochim. Acta, 2004, 50: 529-532.

[15]

Rahner D., Machill S., Ludwig G. Characterization of Lithium and Electrolytes by Electrochemical Impedance Spectroscopy[J]. J. Power Sources, 1995, 54: 378-382.

[16]

Churikov A. V., Gamayunova I. M., Shirokov A. V. Ionic Processes in Solid-Electrolyte Passivating Films on Lithium[J]. J. Solid State Electrochem., 2000, 4: 216-224.

[17]

Kwom C. W., Cheon S. E., Song J. M., . Characteristics of a Lithium-polymer Battery Based on a Lithium Powder Anode[J]. J. Power Sources, 2001, 93: 145-150.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/