Thermal and thermo-oxidative degradation of flame retardant high impact polystyrene with triphenyl phosphate and novolac epoxy resin
Huiyong Li , Changgeng Cai , Yukun Chen , Demin Jia
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 486 -489.
Thermal and thermo-oxidative degradation of flame retardant high impact polystyrene with triphenyl phosphate and novolac epoxy resin
Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition step, as radical HIPS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.
high impact polystyrene / flame retardant / thermal degradation / thermo-oxidative degradation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |