Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell

Jun Yu , Mu Pan , Runzhang Yuan

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 478 -481.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 478 -481. DOI: 10.1007/s11595-006-3478-3
Article

Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell

Author information +
History +
PDF

Abstract

Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR,TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 °C.

Keywords

PEMFC / composite membrane / silicon oxide / high temperature

Cite this article

Download citation ▾
Jun Yu, Mu Pan, Runzhang Yuan. Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(3): 478-481 DOI:10.1007/s11595-006-3478-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang C., Costamagna P., Srinivasan S., . Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells[J]. J.Power Sources, 2001, 103: 1-9.

[2]

Alberti G., Casciola M., Massinelli L., . Polymeric Proton Conducting Membranes for Medium Temperature Fuel Cells (110–160 °C)[J]. Journal of Membrane Science, 2001, 185: 73-81.

[3]

Savinell R., Yeager E., Tryk D., . Apolymer Electrolyte for Operation at Temperatures up to 200 °C[J]. J.Electrochem.Soc., 1994, 141: 46-52.

[4]

Kima Y. M., Choia S. H., Leea H. C. Organic Inorganic Composite Membranes as Addition of SiO2 for High Temperature-Operation in Polymer Electrolyte Membrane Fuel Cells (PEMFCs)[J]. Electrochimica Acta, 2004, 49: 4 787-4 796.

[5]

Antonucci P. L., Arico A. S., Creti P., . Investigation of a Direct Methanol Fuel Cell Based on a Composite Nafion-Silica Electrolyte for High Temperature Operation[J]. Solid State Ionics, 1999, 125: 431-437.

[6]

Shao Z.-G., Joghee P., Hsing I. M. Preparation and Characterization of Hybrid Nafion-Silica Membrane Doped with Phosphotungstic Acid for High Temperature Operation of Proton Exchange Membrane Fuel Cells [J]. Journal of Membrane Science, 2004, 229: 43-51.

[7]

Mauritz K. A., stefanithis I. D. Microstructural Evolution of a Silicon Oxide Phase in a Perfiuorosulfonic Acid Ionomer by an in situ Sol-Gel Reaction[J]. Journal of Applied Polymer Science, 1995, 55: 181-190.

[8]

Adjemian K. T., Srinivasan S., Benziger J., . Investigation of PEMFC Operation Above 100 °C Employing Perfluorosulfonic Acid Silicon Oxide Composite Membranes [J]. Journal of Power Sources, 2002, 109: 356-364.

[9]

Liang Z., Chena W., Liu J., . FT-IR Study of the Microstructure of Nafion® Membrane[J]. Journal of Membrane Science, 2004, 233: 39-44.

[10]

Deng Q., Wilkie C. A., Moore R. B., . TGA-FTIR Investigation of the Thermal Degradation of Nafion and Nafion/[Silicon Oxide]-Based Nanocomposites[J]. Polymer, 1998, 39: 5 961-5 972.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/