Pulse electrodeposition and nanoindentation test of ZrO2/Ni nanocomposite

Shui Ding , Kaifeng Zhang , Changli Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 462 -465.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 462 -465. DOI: 10.1007/s11595-006-3462-y
Article

Pulse electrodeposition and nanoindentation test of ZrO2/Ni nanocomposite

Author information +
History +
PDF

Abstract

ZrO2/Ni nanocomposite was produced via pulse electrodeposition using a nickel sulfmate bath. The effects of main factors including pH value, temperature T, current density D k and ZrO2 content ρ on the electrodeposit were dealt with by the Taguchi method. Experimental results show that the current density and ZrO2 content affect the electrodepositing process significantly. Nanocomposite with an average grain size of about 50 nm and ZrO2 content of up to 0.4 wt% was produced under the optimal condition. The Young’s modulus of the achieved composite is similar to that of polycrystalline Ni. The microhardness is much higher than that of common pure Ni, primarily due to the ultrafine grains of Ni matrix by the Hall-Petch mechanism. The homogeneous dispersion of stiff ZrO2 particles in the Ni matrix acting as dislocation pinning and microcrack pinning also results in the strengthening effect.

Keywords

pulsed electrodeposition / nickel zirconia / nanocomposite / nanoindentation

Cite this article

Download citation ▾
Shui Ding, Kaifeng Zhang, Changli Wang. Pulse electrodeposition and nanoindentation test of ZrO2/Ni nanocomposite. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(3): 462-465 DOI:10.1007/s11595-006-3462-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar K. S., Suresh S., Chisholm M. F., . Deformation of Electrodeposited Nanocrystalline Nickel[J]. Acta. Mater., 2003, 51(2): 387-405.

[2]

Xie J. R., Shao G. Q., Yi Z. L., . The Application of Nanocrystalline Materials[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2004, 26(2): 17-20.

[3]

Zimmerman A. F., Clark D. G., Aust K. T., . Pulse Electrodeposition of Ni-SiC Nanocomposite[J]. Mater. Lett., 2002, 52(1–2): 85-90.

[4]

Klementl U., Erb U., Aust K. T. Investigations of the Grain Growth Behaviour of Nanocrystalline Nickel[J]. Nanostruct. Mater., 1995, 6(5–8): 581-584.

[5]

Qu N. S., Zhu D., Chan K. C., . Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density[J]. Surf. Coat. Tech., 2003, 168(2–3): 123-128.

[6]

Chan K. C., Wang C. L., Zhang K. F. Low Temperature and High Strain Rate Superplasticity of Ni-1 mass% SiC Nanocomposite[J]. Mater. Trans., 2004, 45(8): 2 558-2 563.

[7]

Kieling V. C. Parameters Influencing the Electrodeposition of Ni-Fe Alloys[J]. Surf. Coat. Tech., 1997, 96(2–3): 135-139.

[8]

Ger M. D. Electrochemical Deposition of Nickel/SiC Composites in the Presence of Surfactants[J]. Mater. Chem. Phys., 2004, 87(1): 67-74.

[9]

Sun W., Zhang Q. Y., Huang S. Y. A Study on the Technology and Property of Brush Plated Nickel-Zirconium Dioxide Composite Coating[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2003, 25(4): 11-13.

[10]

Jensen J. A. D., Persson P. O. Å., Pantleon K., . Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships[J]. Surf. Coat. Tech., 2003, 172(1): 79-89.

[11]

Mirshams R. A., Padma P. Nanoindentation of Nanocrystalline Ni with Geometrically Different Indenters[J]. Mat. Sci. Eng., 2004, 372(1–2): 252-260.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/