In vitro degradation of butanediamine-grafted poly(DL-Lactic acids)

Yanfeng Luo , Chunhua Fu , Xufeng Niu , Yuanliang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 426 -430.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 426 -430. DOI: 10.1007/s11595-006-3426-2
Article

In vitro degradation of butanediamine-grafted poly(DL-Lactic acids)

Author information +
History +
PDF

Abstract

The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.

Keywords

poly(DL-lactic acid) / maleic anhydride / butanediamine / in vitro biodegradation

Cite this article

Download citation ▾
Yanfeng Luo, Chunhua Fu, Xufeng Niu, Yuanliang Wang. In vitro degradation of butanediamine-grafted poly(DL-Lactic acids). Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(3): 426-430 DOI:10.1007/s11595-006-3426-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Griffith L. G. Polymeric Biomaterials[J]. Acta Mater, 2000, 48: 263-277.

[2]

Vert M., Schwarch G., Coudane J. Present and Future of PLA Polymers[J]. J. Macromol. Sci., Pure and Appl. Chem., 1995, A32(4): 787-796.

[3]

Kricheldorf H. R., Kreiser-Saunders I., Jurgens C., . Polylactides-synthesis, Characterization and Medical application[J]. Macromol. Symp., 1996, 103: 85-102.

[4]

Edlund U., Albertsson A. C. Degradable Polymer Microspheres for Controlled Drug Delivery[J]. Advances in Polymer Science, 2001, 157: 67-112.

[5]

Mehta R., Kumar V., Bhunia H., . Synthesis of Poly(lactic acid): a Review[J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 2005, 45: 325-349.

[6]

Bergsma J. E., Rozema F. R., Bos R. M. Foreign-body Reaction to Resorbable Poly(l-lactide) Bone Plates and Screws used for the Fixation of Unstable Zygomatic Fractures[J]. J. Oral Maxillofac. Surg., 1993, 51: 666-670.

[7]

Bostman O., Pihlajamaki H. Clinical Biocompatibility of Biodegradable Orthopaedic Implants for Internal Fixation: a Review[J]. Biomaterials, 2000, 21: 2 615-2 621.

[8]

Drumheller P. D., Hubbell J. A. Polymer Networks with Grafted Cell Adhesion Peptides for Highly Biospecific Cell Adhesive Substrates[J]. Anal. Chem., 1994, 222: 380-388.

[9]

Taguchi K., Yano S., Hiratani K., . Ring-opening Polymerization of 3(s)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: a New Route to a Poly(α-hydroxy acid) with Pendant Carboxyl Groups[J]. Macromolecules, 1988, 21: 3 338-3 340.

[10]

Elisseeff J., Anseth K., Langer R., . Synthesis and Characterization of Photo-Cross-Linked Polymers Based on Poly(l-lactic acid-co-aspartic acid) [J]. Macromolecules, 1997, 30: 2 182-2 184.

[11]

rvanitoyannis I. A., Nakayama A., Kawasaki N., . Novel Starshaped Polylactide with Glycerol using Stannous Octoate or Tetraphenyl Tin as Catalyst: 1. Synthesis, Characterization and Study of Their Biodegradability[J]. Polymer, 1995, 36: 2 947-2 956.

[12]

Cannizzaro S. M., Padera R. F., Langer R., . A Novel Biotinylated Degradable Polymer for Cell-interactive Applications[J]. Biotechnol. Bioeng., 1998, 58: 529-535.

[13]

H Otsuka, Y Nagasaki, T Okano, et al. Function of Polylactide Surface using Heterobifunctional PEG/PLA Block Copolymers for the Blank of Cell Behavior at Surfaces[C]. Proceedings of the 22nd Annual EMBS International Conference, Chicago, IL, 2000

[14]

Luo Y. F., Wang Y. L., Niu X. F., . Synthesis and Characterization of a Novel Biomaterial: Maleic Anhydride-Modified Poly(dl-lactic acid)[J]. Chinese Chemical Letters, 2004, 15(5): 521-524.

[15]

Niu X. F., Wang Y. L., Luo Y. F., . Synthesis of the Biomimetic Polymer: Aliphatic Diamine and RGDS Modified Poly(d,l-lactic acid)[J]. Chinese Chemical Letters, 2005, 16(8): 1 035-1 038.

[16]

Luo Y. F., Wang Y. L., Pan J., . A New Family of Modified Poly(d,l-lactic Acids) and Their Hydrophilicity/Hydrophobicity[J]. High Technology Letters, 2003, 13(2): 47-51.

[17]

Kang I. K., Kwon B. K., Lee J. H., . Immobilization of Proteins on Poly(Methyl Methacrylate) Films[J]. Biomaterials, 1993, 14(10): 787-792.

[18]

Zhu Y. B., Gao C. Y., Liu X. Y., . Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic Acid) Toward Acceleration of Endothelium Regeneration[J]. Tissue Eng., 2004, 10(1–2): 53-61.

[19]

Wu X. S., Wang N. Synthesis, Characterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Polymers. Part II: Biodegradation[J]. J. Biomater. Sci. Polymer Edn., 2001, 12(1): 21-34.

[20]

Ginder R. M., Gupta R. K. In vitro Chemical Degradation of Poly(Glycolic Acid) Pellets and Fibers[J]. J. Appl. Polym. Sci., 1987, 33: 2 411-2 429.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/