The photodestruction of virus in Nano-TiO2 suspension

Ruifen Xu , Xiaoling Liu , Peng Zhang , Hao Ma , Gang Liu , Zhengyan Xia

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 422 -425.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (3) : 422 -425. DOI: 10.1007/s11595-006-3422-6
Article

The photodestruction of virus in Nano-TiO2 suspension

Author information +
History +
PDF

Abstract

Hepatitis B surface antigen (HBsAg) was selected as reference to evaluate the photodestructive effect of a self-prepared nano-TiO2 on viruses in aqueous suspension through sandwich ELISA assay (an in vitro enzyme immunoassay) under different conditions, and more general experiments on RNA (ribonucleic acid) and casein were carried out. Results indicate that TiO2 is destructive at least to most viruses in water. The mechanism of destruction was discussed.

Cite this article

Download citation ▾
Ruifen Xu, Xiaoling Liu, Peng Zhang, Hao Ma, Gang Liu, Zhengyan Xia. The photodestruction of virus in Nano-TiO2 suspension. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(3): 422-425 DOI:10.1007/s11595-006-3422-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MillsA., HunteS. L.. An Overview of Semiconductor Photocatalysis[J]. J. Photochem. Photobiol., A, 1997, 108: 1-35

[2]

MatsunagaT., TomodaR., NakajimaT., et al.. Continuoussterilization System that Uses Photosemiconductor Powders[J]. Appl. Environ. Microbiol, 1988, 54(6): 1 330-1 333

[3]

MatsunagaT., TomodaR., NakajimaT., et al.. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders[J]. FEMS Microbiol. Lett, 1985, 29: 211-214

[4]

SjogrenJ. C., SierkaR. A.. Inactivation of Phage MS2 by Iron-aided Titanium Dioxide Photocatalysis[J]. Appl. Environ. Microbiol, 1994, 60(1): 344-347

[5]

WattsR. J., KongS., OrrM. P., et al.. Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent[J]. Water Res, 1995, 29(1): 95-100

[6]

TrykD. A., FujishimaA., HondaK.. Recent Topics in Photoelectrochemistry: Achievements and Future Prospects[J]. Electroch. Acta, 2000, 45: 2 363-2 376

[7]

LegriniO., OliverosE., BraumA. M.. Photochemical Process for Water Treatment[J]. Chem. Rev, 1993, 93: 671-698

[8]

AlfanoO. M., CabreraM. I., CassanoA. E.. Photocatalytic Reactions Involving Hydroxyl Radical Attack[J]. J. Catal., 1997, 172: 370-379

[9]

IshibashiK., FujishimaA., WatanabeT., et al.. Detection of Active Oxidative Species in TiO2 Photocatalysis Using the Fluorescence Technique[J]. Electrochem. Commun., 2000, 2: 207-210

[10]

QingD., WangD. Y., YuanC. W.. A Novel Method for Detecting OH Radicals Generated by Photoexcited Nanoparticles[J]. Supermol. Sci., 1998, 5: 469-473

[11]

ZhaoB. L.Oxygen Free Radicals and Natural Antioxidants[M], 1999, Beijing, Science Publishing House: 4-15

[12]

AshikagaT., WadaM., KobayashiH., et al.. Effect of the Photocatalytic Activity of TiO2 on Plasmid DNA[J]. Mut. Res., 2000, 466: 1-7

RIGHTS & PERMISSIONS

Wuhan University of Technology and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/