Synthesis and characterization of Li-doped LaMnO3 CMR materials

Lei Liwen , Fu Zhengyi , Zhang Jinyong

Journal of Wuhan University of Technology Materials Science Edition ›› 2005, Vol. 20 ›› Issue (4) : 77 -79.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2005, Vol. 20 ›› Issue (4) : 77 -79. DOI: 10.1007/BF02841288
Article

Synthesis and characterization of Li-doped LaMnO3 CMR materials

Author information +
History +
PDF

Abstract

A series of bulk polycrystalline La1−xLixMnO3 samples with x ranging from 0.1 to 0.5 was prepared by sol-gel method. X-ray diffraction patterns show that the crystal structures are single rhombohedral perovskite for the x≤0.3 sample and the impurity appears when x>0.3. Under the same synthesized conditions, the higher Li content samples display a higher content of liquid phase content and larger mean grain sizes, which leads to the increases of the effect of the grain boundaries. The experimental results show that the change of the ferromagnetic transition temperature and the resistivity can attribute to the effect of the grain boundary and the connectivity of the inter grains as well as the ratio of Mn3+ to Mn4+.

Keywords

sol-gel method / doped content / grain boundary / magnetotransport

Cite this article

Download citation ▾
Lei Liwen, Fu Zhengyi, Zhang Jinyong. Synthesis and characterization of Li-doped LaMnO3 CMR materials. Journal of Wuhan University of Technology Materials Science Edition, 2005, 20(4): 77-79 DOI:10.1007/BF02841288

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gorbenko O Yu, Melnikov O V. Solid Solutions La1−x Ag, MnO3+δ: Evidence for Silver Doping, Structure and Properties. Material Science and Engineering B, 2005, 116(1): 64-70.

[2]

Coey J M D, Viret M. Mixed-valence Manganites. Advances in Physics, 1999, 48(2): 167-293.

[3]

Nagaev E L. Colossal-magnetoresistance Materials: Manganites and Conventional Ferromagnetic Semiconductors. Phys. Rep., 2001, 346: 387-531.

[4]

Barratt J, Lees M R, Balakrishnan G, Paul D Mck. Insulator-metal Transitions in PrCaMnO3 Induced by a Magnetic Field. Appl. Phys. Lett., 1996, 68(3): 424-426.

[5]

Shivakumara C, Subbanna G N, Lalla N P, Hegde M S. Na Substitution for La- and Mn-Sites in LaMnO3 from Alkali Halide Fluxes: Low Temperature, Structure and Properties. Mater. Res. Bull., 2004, 39(1): 71-81.

[6]

Tao T, Cao Q Q, Gu K M, Xu H Y, Zhang S Y, Du Y W. Giant Magnetoresistance of the La1−xAg xMnO3 Polycrystalline Imhomogeneous Granular System. Appl. Phys. Lett., 2000, 77(5): 723-725.

[7]

Popa Monica, Kakihana Masato. Synthesis of Lanthanum Cobaltite (LaCoO3) by the Polymerizable Complex Route. Solid State Ionics, 2002, 151(1–4): 251-257.

[8]

Ye S L, Song WH, Dai J M, Wang S G, Wang K Y. Effect of Li Substitution on Crystal Structure and Magnetoresistance of LaMnO3. J. Appl. Phys., 2000, 88(10): 5915-5919.

[9]

Fu Yonglai. Grain-boundary effects on Electrical Resistivity and Ferromagnetic Transition Temperature of La0.8 Ca0.2 MnO3. Appl. Phys. Lett., 2000, 77(1): 118-120.

[10]

Gorkov Lev P, Kresin Vladimir Z. Mixed-valence Manganites: Fundamentals and Main Properties. Phys. Rep., 2004, 400: 149-208.

[11]

Vetruyen B, Rulmont A, Cloots R. Synthesis of CMR Manganate Compounds: the Consequences of a Choice of the Precursor Method. Mater. Lett., 2002, 57(3): 598-603.

[12]

Muller R, Eick T, Steinmetz H, Steinbeib E. LaSr-manganate Powders and Bulk Material by Crystallization of a Glass. J. Eur. Ceram. Soc., 2001, 21(3): 1941-1944.

[13]

Roul B K, Sahu D R, Mohanty S, Pradhan A K. Effect of High Temperature Sintering Schedule for Enhanced CMR Properties of LaCaMnO lose to Room Temperature. Mater. Chem. Phys., 2001, 67(1–3): 267-271.

[14]

Pradhan A K, Roul B K, Wen J G. Enhanced Room-temperature Magnetoresistance in Partially Melted La0.67Ca0.33MnO3 Manganites. Appl. Phys. Lett., 2000, 76(6): 763-765.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/