Optical characteristics of InAs quantum dots on GaAs matrix by using various InGaAs structures

Kong Lingmin , Cai Jiafa , Wu Zhengyun , Gong Zheng , Fang Zhidan , Niu Zhichuan

Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (2) : 76 -79.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2006, Vol. 21 ›› Issue (2) : 76 -79. DOI: 10.1007/BF02840845
Article

Optical characteristics of InAs quantum dots on GaAs matrix by using various InGaAs structures

Author information +
History +
PDF

Abstract

The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy (MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGaAs/GaAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.

Keywords

InGaAs layer / InAs quantum dots / time-resolved PL spectra

Cite this article

Download citation ▾
Kong Lingmin, Cai Jiafa, Wu Zhengyun, Gong Zheng, Fang Zhidan, Niu Zhichuan. Optical characteristics of InAs quantum dots on GaAs matrix by using various InGaAs structures. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(2): 76-79 DOI:10.1007/BF02840845

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Maksimov M V, Shernyakov Yu M, Kryzhanovskaya N V, . High-power 1.5 μm InAs/InGaAs Quantum Dot Lasers on GaAs Substrates[J]. Semiconductors, 2004, 38(6): 732-735.

[2]

Liu H Y, Hopkinson M, Harrison C N, . Optimizing the Growth of 1.3 μm InAs/InGaAs Dots-in-a-well Structure[J]. J. of Appl. Phys., 2003, 93(5): 2931-2936.

[3]

Nishi K, Saito H, Sugou S, . Narrow Photoluminescence Linewidth of 21 meV at 1.35 μm from Strain-reduced InAs Quantum Dots Covered by In0.2 Ga0.8 As Grown on GaAs Substrates[J]. Appl. Phys. Lett., 1999, 74(8): 1111-1113.

[4]

Ahopelto J, Lipsanen H, Sopanen M, . Selective Growth of InGaAs on Nanoscale InP Islands[J]. Appl. Phys. Lett., 1994, 65(13): 1662-1664.

[5]

Chang F Y, Wu C C, Lin H H. Effect of InGaAs Capping Layer on the Properties of InAs/InGaAs Quantum Dots and Lasers[J]. Appl. Phys. Lett., 2003, 82(25): 4477-4479.

[6]

Ustinov V M. Quantum Dot Structures: Fabrication Technology and Control of Parameters [J]. Semiconductor, 2004, 38(8): 923-930.

[7]

Niu Z C, Wang X D, Miao Z H, . Modification of Em Emission Wavelength of Self-assembled In(Ga)As/GaAs Quantum Dots Covered by InxGa1−xAs(0≤x≤0.3) Layer[J]. Journal of Crystal Growth, 2001, 227–228: 1062-1068.

[8]

Chen J X, Oesterle U, Fiore A, . Matrix Effects on the Structural and Optical Properties of InAs Quantum Dots[J]. Appl. Phys. Lett., 2001, 79(22): 3681-3683.

[9]

Bloch J, Shah J, Pfeiffer L N, . Optical Properties of Multiple Layers of Self-organized InAs Quantum Dots Emitting at 1.3 μm[J]. Appl. Phys. Lett., 2000, 77(16): 2545-2547.

[10]

Mukhametzhanov I, Heitz R, Zeng J, . Independent Manipulation of Density and Size of Stress-driven Self-assembled Quantum Dots[J]. Appl. Phys. Lett., 1998, 73(13): 1841-1843.

[11]

Kim J S, Yu P W, Leem J Y, . Growth of Si-doped InAs Quantum Dots and Annealing Effects on Size Distribution[J]. J. Cryst. Growth, 2002, 234(1): 105-109.

[12]

Ledentsov N N, Bohrer J, Bimberg D, . Formation of Coherent Superdots Using Metal-organic Chemical Vapor Deposition[J]. Appl. Phys. Lett., 1996, 69(8): 1095-1097.

[13]

Xie Q H, Madhukar A, Chen P, . Vertically Self-organized InAs Quantum Box Islands on GaAs(100)[J]. Phys. Rev. Lett., 1995, 75(13): 2542-2545.

[14]

Urayama J, Norris T B, Jiang H, . Temperature-dependent Carrier Dynamics in Self-assemble InGaAs Quantum Dots[J]. Appl. Phys. Lett., 1902, 80(12): 2162-2614.

[15]

Shoji H, Nakata Y, Mukai K, . Temperature Dependent Lasing Characteristics of Multi-stacked Quantum Dot Lasers[J]. Appl. Phys. Lett., 1997, 71(2): 193-195.

[16]

Yang W, Lowe-Webb R R, Lee H, . Effect of Carrier Emission and Retrapping on Luminescence Time Decays in InAs/GaAs Quantum Dots[J]. Phys. Rev. B, 1997, 56(20): 13314-13320.

[17]

Sanguinetti S, Henini M, Grassi Alessi M, . Carrier Thermal Escape and Retrapping in Self-assembled Quantum Dots[J]. Phys. Rev. B, 1999, 60(11): 8276-8283.

[18]

Shchekin Oleg B, Gyoungwon Park, Huffaker Diana L, . Discrete Energy Level Separation and the Threshold Temperature Dependence of Quantum Dot Lasers[J]. Appl. Phys. Lett., 2000, 77(4): 466-468.

[19]

Boggess Thomas F, Zhang L, Deppe D C, . Spectral Engineering of Carrier Dynamics in In(Ga)As Self-assembled Quantum Dots[J]. Appl. Phys. Lett., 2001, 78(3): 276-278.

[20]

Bhattacharya P, Kamath K K, Singh J, . In(Ga) As/GaAs Self-organized Quantum Dot Lasers: DC and Small-signal Modulation Properties [J]. IEEE Trans. Electron Devices, 1999, 46(5): 871-883.

[21]

Zhang L, Boggess T F, Deppe D G, . Dynamic Response of 1,3-μm-wavelength InGaAs/GaAs Quantum Dots[J]. Appl. Phys. Lett., 2000, 76(10): 1222-1224.

[22]

Deppe D G, Huffaker D L. Quantum Dimensionality, Entropy, and the Modulation Response of Quantum Dot Lasers [J]. Appl. Phys. Lett., 2000, 77(21): 3325-3327.

[23]

Ghosh S, Kochman B, Singh J, . Conduction Band Offset in InAs/GaAs Self-organized Quantum Dots Measured by Deep Level Transient Spectroscopy[J]. Appl. Phys. Lett., 2000, 76(18): 2571-2573.

[24]

Gong Z, Fang Z D, Xu X H, . Role of Different Cap Layers Tuning the Wavelength of Self-assembled InAs/GaAs Quntum Dots[J]. Journal of Physics: Condens Matter, 2003, 15(31): 5383-5388.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/