IR spectra analysis of SiO2−TiO2−GeO2 gel glass of CO2 laser transmitting hollow waveguide

Jing Cheng-bin , Zhao Xiu-jian , Han Jian-jun , Tao Hai-zheng , Liu Ai-yun , Zhu Kun

Journal of Wuhan University of Technology Materials Science Edition ›› 2002, Vol. 17 ›› Issue (4) : 54 -57.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2002, Vol. 17 ›› Issue (4) : 54 -57. DOI: 10.1007/BF02838418
Article

IR spectra analysis of SiO2−TiO2−GeO2 gel glass of CO2 laser transmitting hollow waveguide

Author information +
History +
PDF

Abstract

Both titanium and germanium were introduced into silicon dioxide system by sol-gel method to move its region of anomalous dispersion caused by IR resonance absorption towards the wavelength of CO2 laser. It is indicated by IR absorption spectra that as the content of SiO2 decreases in this glass system TiO2 and GeO2 tends to exist in their own phases. As for the gel glass with a composition of 40 SiO2·30TiO2·30GeO2, when the temperature is below 600°C, germanium atoms exist mainly in Ge−O−Ge bonds. With the temperature increasing from 800°C to 1000°C, titanium atoms in Si−O−Ti bonds abmost transform into Ti−O−Ti bonds. Furthermore, a large number of Si−O−Ti and Si−O−Ge bonds formed when the temperature approaches 800°C, which makes a notable IR absorption band round the wavelength of CO2 laser. Therefore, sol-gel based SiO2−TiO2−GeO2 gel glass is a candidate material for CO2 laser hollow waveguide.

Keywords

hollow waveguide / SiO2−TiO2−GeO2 gel glass / IR spectra CO2 laser

Cite this article

Download citation ▾
Jing Cheng-bin, Zhao Xiu-jian, Han Jian-jun, Tao Hai-zheng, Liu Ai-yun, Zhu Kun. IR spectra analysis of SiO2−TiO2−GeO2 gel glass of CO2 laser transmitting hollow waveguide. Journal of Wuhan University of Technology Materials Science Edition, 2002, 17(4): 54-57 DOI:10.1007/BF02838418

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hidaka T. Loss Calculations of the Hollow-core, oxide-glass-cladding, Middle-infrared Optical Waveguide. J. Appl. phys., 1982, 53(1): 93-97.

[2]

Saggese Steven J, Harrington Tanes A, Sigel George H. Attenuation of Incoherent Infrared Radiation in Hollow Sapphire and Silica Waveguides. Optics Letters, 1991, 16(1): 321-325.

[3]

N Croitoru, A Inbeg, M Oksman, M. Ben-David. Hollow Silica, Metal and Plastic Waveguides for Hard Tissue Medical Application.SPIE, 2977: 30–34.

[4]

Worrell C A. Infrared Optical Constants for CO2 Laser Waveguide Materials. Journal of Materials Sciences, 1981, 21: 781-787.

[5]

Hidaka T, Morikawa T, Shinada J. Hollow-core Oxide-glass Cladding Optical Fibers for Middle-infrared Region. J. Appl. Phys, 1981, 52(7): 4467-4471.

[6]

Jian-jun Han, Jixiang Liu, Xue-dong Zhou, Yu-lan Mao. Influence of Sb2O3 and PbO Content on Glass Properties of SiO2-Based for Hollow Waveguides. Journal of Wuhan University of Technology—Mater. Sci. Ed., 1998, 13(4): 50-55.

[7]

Hidaka T, Kumada K, Shimada J, Morikawa T. GeO2−Zno−K2O Glass as the Cladding Material of 940cm−1 CO2 Laser-light TranSmitting Hollow-core Waveguide. J. Appl. Phys., 1982, 53(8): 5484-5490.

[8]

Haruvi-Busnach I, Dror J, Critoru N. Chalcogenide Glasses Ge−Sn−Se, Ge−Se−Te, and Ge−Sn−Se−Te for Infrared Optical Fibers. J. Mater. Res., 1990, 5(6): 1215-1223.

[9]

Nagano Nobuhiro, Saito Mitsunori, Miyagi Mitsunobu, Baba Nobuyoshi, Sawanobori Naruhito. TiO2−SiO2 Based Glasses for Infared Hollow Waveguides. Applied Optics, 1991, 30(9): 1074-1079.

[10]

Hirai Yuuji, Fukuda Takumi, Kubota Kanji. Optical Properties of SiO2−GeO2 Glasses Made by Sol-gel Method. Journal of Non-Crystalline Solids, 1986, 88: 431-435.

[11]

Shibata S, Kitagwa T, Hana F, Optical W A, Horiguchi M. Fabrication of SiO2−GeO2 Core Optical Fibers by the Sol-gel Method. Journal of Non-Crystalline Solids, 1986, 88: 354-354.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/