A flier-plate material with graded impedance used in dynamic high-pressure physics

Wang Chuan-bin , Shen Qiang , Zhang Lian-meng

Journal of Wuhan University of Technology Materials Science Edition ›› 2002, Vol. 17 ›› Issue (4) : 32 -35.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2002, Vol. 17 ›› Issue (4) : 32 -35. DOI: 10.1007/BF02838412
Article

A flier-plate material with graded impedance used in dynamic high-pressure physics

Author information +
History +
PDF

Abstract

By using such flier-plate material, quasi-isentropic compression can be realized. Based on it, hypervelocity launching is further accomplished. As a result, an extremely high dynamic pressure can be obtained in laboratory, offering a practical method for the comprehensive determination of materials behavior, response, equation-of-state and properties in dynamic loading process.

Keywords

flier-plate material with graded impedance / quasi-isentropic compression / hypervelocity launching

Cite this article

Download citation ▾
Wang Chuan-bin, Shen Qiang, Zhang Lian-meng. A flier-plate material with graded impedance used in dynamic high-pressure physics. Journal of Wuhan University of Technology Materials Science Edition, 2002, 17(4): 32-35 DOI:10.1007/BF02838412

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niino M, Hirai T. Functionally Gradient Materials. J. Jpn. Soc. Compos. Mater., 1987, 13(6): 257-264.

[2]

Yuan R Z, Zhang L M. Design and Fabrication of a MgO/Ni Functionally Gradient Material. Journal of Materials Synthesis and Processing, 1993, 1(3): 171-179.

[3]

Zhang L M, Oomori M. Residual and Working Stresses of a TiC/Ni3Al FGM and Its Structural Optimization. J. Mater. Sci. Letters, 1995, 14(22): 1620-1623.

[4]

Jing F Q. Ultrahigh Dynamic Pressure Techniques (I). Explosion and Shock, 1984, 4(3): 1-9.

[5]

Jing F Q. Ultrahigh Dynamic Pressure Techniques (II). Explosion and Shock, 1984, 4(4): 24-29.

[6]

Wang N Y. The Gas Gun Facility for Material Impact Experiments. Explosion and Shock, 1993, 13(1): 90-96.

[7]

Wang J G. The Launching Technique of Hypervelocity Projectiles in Two-stage Light Gas Gun. Chinese Journal of High Pressure Physics, 1992, 6(4): 264-272.

[8]

Ding F, Huang S H. Dynamic Quasi-isentropic Compression of Oxygen Free Copper. Chinese Journal of High Pressure Physics, 1990, 4(2): 150-155.

[9]

L M Barker, D D Scott. Development of a High-pressure Quasi-isentropic Plane Wave Generating Capability.SAND, 84-0432: 1–50

[10]

Chhabildas L C, Dunn J E. An Impact Technique to Accelerate Flier Plates to Velocities Over 12km/s. Int. J. Impact Engng., 1993, 14: 121-132.

[11]

Ma X Q. Shock Dynamics, 1992, Beijing: Beijing University of Science and Technology Press, 172-183.

[12]

Jing F Q. Hypervelocity Impact Phenomena. Explosion and Shock, 1990, 10(3): 279-288.

[13]

L M Barker. High-pressure Quasi-isentropic Impact Experiments. In: J R Asay,Shock Compression of Condensed Matter —1983, Amsterdam, 1984: 217–224

[14]

L C Chhabildas, L M Barker. Dynamic Quasi-isentropic Compression of Tungsten. In: S C Schmidt,Shock Compression of Condensed Matter—1987, Amsterdam, 1988: 111–114

[15]

L C Chhabildas, J R Asay. Dynamic Yield Strength and Spall Strength Measurements Under Quasi-Isentropic Loading.SAND90-0883C

[16]

Chhabildas L C, Kmetyk L N. Enhanced Hypervelocity Launcher-capabilities to 16km/s. Int. J. Impact Engng., 1995, 17: 183-194.

[17]

Hu J B. Sound Velocities at High Pressures and Shock-melting of Copper. Chinese Journal of High Pressure Physics, 1989, 3(3): 187-197.

[18]

Zhao X H, Li Q M. Dynamic Properties of TC—4 Titanium Under High Strain-rate. Explosion and Shock, 1990, 10(3): 239-243.

[19]

Wang J G, Li X Z. Shock Compression Properties of Three Tungsten Alloys. Chinese Journal of High Pressure Physics, 1998, 12(4): 258-263.

[20]

S H Huang, F Ding. Dynamic Quasi-isentropic Compression of Oxygen Free Copper. In: S C Schmidt,Shock Compression of Condensed Matter—1989, Amsterdam, 1990: 313–316

[21]

Shen Q, Zhang L M. Fabrication of W−Mo−Ti System Flier-plate with Graded Impedance for Generating Quasi-isentropic Compression. Chinese Science Bulletin, 2000, 45(15): 1421-1423.

[22]

Hua J S, Jing F Q. Study of Numerical Simulation for Quasi-isentropic Compression. Chinese Journal of High Pressure Physics, 2000, 14(3): 195-202.

[23]

Hua J S, Tan H. Theoretical Design of Hypervelocity Launcher. Chinese Journal of High Pressure Physics, 1999, 13(sup.): 277-280.

[24]

Lin S M, Xu N X. Numerical Simulations of Hypervelocity Launchers. Chinese Journal of High Pressure Physics, 2000, 14(2): 139-145.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/