Interactions Between Gut Microbiota and Brain: Possible Effects on Sport Performance

Junior Carlone , Saverio Giampaoli , Alfredo Brancucci

Journal of Science in Sport and Exercise ›› : 1 -23.

PDF
Journal of Science in Sport and Exercise ›› :1 -23. DOI: 10.1007/s42978-025-00344-w
Review Article
review-article

Interactions Between Gut Microbiota and Brain: Possible Effects on Sport Performance

Author information +
History +
PDF

Abstract

Purpose

This review examines the bidirectional interactions between gut microbiota and the brain, with a specific focus on their implications for sport performance. The main research question addresses how gut-brain communication responds to physical activity and actively contributes to athletic performance in elite athletes subjected to high physiological demands.

Methods

A comprehensive review was conducted analysing the characteristics and development of gut microbiota, the methods used to investigate microbiota-brain interactions and the bidirectional communication pathways. The analysis distinguished the two directions of interaction brain-induced effects on microbiota and microbiota-induced effects on brain activity, with specific integration into sports contexts.

Results

The review identified that gut-brain communication constitutes a dynamic system that responds to physical activity through multiple pathways. Elite athletes, subjected to high-intensity training regimens, specialized nutritional approaches and specific performance goals, exhibit distinctive microbiota conditions. Brain-derived neurotrophic factor (BDNF), serotonin and butyrate emerged as key mediators that contribute to adaptive gut microbiota conditions and facilitate microbiota-brain interactions.

Conclusion

The microbiota-gut-brain axis represents a fundamental system actively contributing to sport performance. The interdisciplinary evidence from neuroscientists, microbiologists, nutritionists and sports scientists demonstrates that understanding these interactions opens new frontiers for optimizing athletic performance through targeted modulation of this bidirectional communication system.

Keywords

Microbiota / Gut-Brain axis / Cognitive Function / Sport Performance / Athletes

Cite this article

Download citation ▾
Junior Carlone, Saverio Giampaoli, Alfredo Brancucci. Interactions Between Gut Microbiota and Brain: Possible Effects on Sport Performance. Journal of Science in Sport and Exercise 1-23 DOI:10.1007/s42978-025-00344-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, Sparwasser T, Bérard M, Cerf-Bensussan N, Eberl G. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity, 2019, 50(5): 1276-e12885.

[2]

An E, Delgadillo DR, Yang J, Agarwal R, Labus JS, Pawar S, Lietman M, Kilpatrick LA, Bhatt RR, Vora P, Vaughan A, Dong TS, Gupta A. Stress-Resilience impacts psychological wellbeing: evidence from Brain-Gut Microbiome interactions. Nat Mental Health, 2024, 2(8): 935-50.

[3]

Bakonyi P, Kolonics A, Aczel D, Zhou L, Mozaffaritabar S, Molnár K, László L, Kutasi B, Tanisawa K, Park J, Gu Y, Pinho RA, Radak Z. Voluntary exercise does not increase Gastrointestinal motility but increases spatial memory, intestinal eNOS, Akt levels, and bifidobacteria abundance in the Microbiome. Front Physiol, 2023, 14: 1173636.

[4]

Barrio C, Arias-Sánchez S, Martín-Monzón I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behaviour: A systematic review. Psychoneuroendocrinology, 2022, 137: 105640.

[5]

Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O’Sullivan O. The Microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 2018, 67(4): 625-33.

[6]

Beaumont M, Mussard E, Barilly C, Lencina C, Gress L, Painteaux L, Gabinaud B, Cauquil L, Aymard P, Canlet C, Paës C, Knudsen C, Combes S. Developmental Stage, solid food Introduction, and suckling cessation differentially influence the comaturation of the gut microbiota and intestinal epithelium in rabbits. J Nutr, 2022, 152(3): 723-36.

[7]

Becker B, Pushkareva E. Metagenomics provides a deeper assessment of the diversity of bacterial communities in Polar soils than metabarcoding. Genes, 2023, 14(4): 812.

[8]

Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med, 2009, 60: 355-66.

[9]

Bermon S, Petriz B, Kajėnienė A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev, 2015, 21: 70-9

[10]

Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis, 2023, 106(4): 115954.

[11]

Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the Microbiota-Gut-Brain axis. Front NeuroSci, 2018, 12: 49.

[12]

Bongiovanni T, Santiago M, Zielinska K, Scheiman J, Barsa C, Jäger R, Pinto D, Rinaldi F, Giuliani G, Senatore T, Kostic AD. A Lactobacillus consortium provides insights into the sleep-exercise-microbiome nexus in proof of concept studies of elite athletes and in the general population. Microbiome, 2025, 13(1): 1.

[13]

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 2014, 6(263): 263ra158.

[14]

Brett BE, de Weerth C. The microbiota-gut-brain axis: A promising avenue to foster healthy developmental outcomes. Dev Psychobiol, 2019, 61(5): 772-82.

[15]

Cammisuli DM, Fusi J, Scarfò G, Daniele S, Castelnuovo G, Franzoni F. A minireview exploring the interplay of the Muscle-Gut-Brain (MGB) axis to improve knowledge on mental disorders: implications for clinical neuroscience research and therapeutics. Oxid Med Cell Longev. 2022:8806009. https://doi.org/10.1155/2022/8806009.

[16]

Campisciano G, Biffi S. Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon, 2022, 8(12): e12511.

[17]

Carlone J, Giampaoli S, Alladio E, Rosellini G, Barni F, Salata E, Parisi A, Fasano A, Tessitore A. Dynamic stability of gut microbiota in elite volleyball athletes: microbial adaptations during training, competition and recovery. Front Sports Act Living. 2025;7:1662964. https://doi.org/10.3389/fspor.2025.1662964.

[18]

Carlone J, Lista M, Romagnoli R, Sgrò P, Piacentini MF, Di Luigi L. The role of the hormonal profile of constitutional biotypes in the training process. Med Dello Sport. 2023;76(3). https://doi.org/10.23736/s0025-7826.23.04346-6.

[19]

Cavaliere G, Catapano A, Trinchese G, Cimmino F, Penna E, Pizzella A, Cristiano C, Lama A, Crispino M, Mollica MP. Butyrate improves neuroinflammation and mitochondrial impairment in cerebral cortex and synaptic fraction in an animal model of Diet-Induced obesity. Antioxid (Basel Switzerland), 2022, 12(1): 4.

[20]

Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, Miani M, Patterson E, Pot B, Shortt C, Vauzour D. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci, 2022, 79(2): 80.

[21]

Chatterjee G, Negi S, Basu S, Faintuch J, O’Donovan A, Shukla P. Microbiome systems biology advancements for natural well-being. Sci Total Environ, 2022, 838(Pt 2): 155915.

[22]

Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatry, 2024, 37(1): e101374.

[23]

Chuang JY. Romantic relationship Dissolution, Microbiota, and fibers. Front Nutr, 2021, 8: 655038.

[24]

Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr, 2016, 13: 43.

[25]

Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63(12): 1913-20.

[26]

Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1): 17-44.

[27]

Cooke MB, Catchlove S, Tooley KL. Examining the influence of the human gut microbiota on cognition and stress: a systematic review of the literature. Nutrients, 2022, 14(21): 4623.

[28]

Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 2012, 13(10): 701-12.

[29]

D’Argenio V, Salvatore F. The role of the gut Microbiome in the healthy adult status. Clin Chim Acta, 2015, 451Pt A: 97-102.

[30]

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-78.

[31]

Dallas DC, Sanctuary MR, Qu Y, Khajavi SH, Van Zandt AE, Dyandra M, Frese SA, Barile D, German JB. Personalizing protein nourishment. Crit Rev Food Sci Nutr, 2017, 57(15): 3313-31.

[32]

Dalton A, Mermier C, Zuhl M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes, 2019, 10(5): 555-68.

[33]

Dill-McFarland KA, Tang ZZ, Kemis JH, Kerby RL, Chen G, Palloni A, Sorenson T, Rey FE, Herd P. Close social relationships correlate with human gut microbiota composition. Sci Rep, 2019, 9(1): 703.

[34]

Di Napoli A, Pasquini L, Visconti E, Vaccaro M, Rossi-Espagnet MC, Napolitano A. Gut-brain axis and neuroplasticity in health and disease: a systematic review. Radiol Med, 2025, 130(3): 327-58.

[35]

Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol, 2024, 15: 1380713.

[36]

Dohnalová L, Lundgren P, Carty JRE, Goldstein N, Wenski SL, Nanudorn P, Thiengmag S, Huang KP, Litichevskiy L, Descamps HC, Chellappa K, Glassman A, Kessler S, Kim J, Cox TO, Dmitrieva-Posocco O, Wong AC, Allman EL, Ghosh S, Sharma N, Thaiss CA. A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature, 2022, 612(7941): 739-47.

[37]

Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ. The Microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabol, 2011, 13(5): 517-26.

[38]

El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, El-Ghandour R, Nasrallah P, Bilen M, Ibrahim P, Younes J, Abou Haidar E, Barmo N, Jabre V, Stephan JS, Sleiman SF. Lactate mediates the effects of exercise on learning and memory through SIRT1-Dependent activation of hippocampal Brain-Derived neurotrophic factor (BDNF). J Neuroscience: Official J Soc Neurosci, 2019, 39(13): 2369-82.

[39]

Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, Macko R, Marquez DX, Petruzzello SJ, Powell KE2018 Physical Activity Guidelines Advisory Committee. Physical activity, Cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Med Sci Sports Exerc, 2019, 51(6): 1242-51.

[40]

Fasano A.. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9:F1000 . https://doi.org/10.12688/f1000research.20510.1.

[41]

Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci, 2012, 1258(1): 25-33.

[42]

Fasano A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clinical gastroenterology and hepatology: the official clinical practice. J Am Gastroenterological Association, 2012, 10(10): 1096-100.

[43]

Fasano A. The physiology of hunger. N Engl J Med, 2025, 392(4): 372-81.

[44]

Fernandez-Sanjurjo M, Fernandez J, Martinez-Camblor P, Rodriguez-Alonso M, Ortolano-Rios R, Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Ruiz L, Villar CJ, Tomas-Zapico C, Margolles A, Fernandez-Garcia B, Iglesias-Gutierrez E, Lombó F. Dynamics of gut microbiota and short-chain fatty acids during a cycling grand tour are related to exercise performance and modulated by dietary intake. Nutrients, 2024, 16(5): 661.

[45]

Forteza F, Giorgini G, Raymond F. Neurobiological processes induced by aerobic exercise through the endocannabinoidome. Cells, 2021, 10(4): 938.

[46]

Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the Microbiome. Neurobiol Stress, 2017, 7: 124-36.

[47]

González-Arancibia C, Urrutia-Piñones J, Illanes-González J, Martinez-Pinto J, Sotomayor-Zárate R, Julio-Pieper M, Bravo JA. Do your gut microbes affect your brain dopamine?. Psychopharmacology, 2019, 236(5): 1611-22.

[48]

Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain axis in regulating dopaminergic signaling. Biomedicines, 2022, 10(2): 436.

[49]

He Q, Kwok LY, Xi X, Zhong Z, Ma T, Xu H, Meng H, Zhao F, Zhang H. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes, 2020, 12(1): 1794266.

[50]

Hoffman-Goetz L, Pervaiz N, Packer N, Guan J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav Immun, 2010, 24(7): 1105-15.

[51]

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Therapy, 2022, 7(1): 135.

[52]

Hughes RL, Holscher HD. Fueling gut microbes: a review of the interaction between diet, exercise, and the gut microbiota in athletes. Adv Nutr. 2021;12(6):2190–215. https://doi.org/10.1093/advances/nmab077.

[53]

Ihekweazu FD, Versalovic J. Development of the pediatric gut microbiome: impact on health and disease. Am J Med Sci, 2018, 356(5): 413-23.

[54]

Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ter Haar JA, Antonio J. International Society of Sports Nutrition position stand: Probiotics. J Int Soc Sports Nutr. 2019;16(1):62. https://doi.org/10.1186/s12970-019-0329-0.

[55]

Kachoueiyan F, Kalkhoran NY, Kalkhoran AY, Kyada A, Rekha MM, Chaudhary K, Barwal A, Sead FF, Joshi KK. Butyrate: a key mediator of gut-brain communication in alzheimer’s disease. Metab Brain Dis, 2025, 40(5): 189.

[56]

Kang P, Wang AZ. Microbiota-gut-brain axis: the mediator of exercise and brain health. Psychoradiology, 2024, 4: kkae007.

[57]

Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol. 2018;9:2013. https://doi.org/10.3389/fmicb.2018.02013.

[58]

Keirns BH, Koemel NA, Sciarrillo CM, Anderson KL, Emerson SR. Exercise and intestinal permeability: another form of exercise-induced hormesis?. Am J Physiol Gastrointest Liver Physiol, 2020, 319(4): G512-8.

[59]

Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, Pekmez CT, Rivollier A, Michaelsen KF, Mølgaard C, Lind MV, Dragsted LO, Katayama T, Frandsen HL, Vinggaard AM, Bahl MI, Brix S, Agace W, Licht TR, Roager HM. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol, 2021, 6(11): 1367-82.

[60]

Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, Lemaire S, Garnier P, Prigent-Tessier A. Impact of exercise intensity on cerebral BDNF levels: role of FNDC5/Irisin. Int J Mol Sci, 2024, 25(2): 1213.

[61]

Li J, Li Y, Zhao J, Li L, Wang Y, Chen F, Li Y, Cheng R, He F, Ze X, Shen X. Effects of bifidobacterium Breve 207-1 on regulating lifestyle behaviors and mental wellness in healthy adults based on the microbiome-gut-brain axis: a randomized, double-blind, placebo-controlled trial. Eur J Nutr, 2024, 63(7): 2567-85.

[62]

Li R, Liu R, Chen L, Wang G, Qin L, Yu Z, Wan Z. Microbiota from exercise mice counteracts high-fat high-cholesterol diet-induced cognitive impairment in C57BL/6 Mice. Oxid Med Cell Longev. 2023;2023:2766250. https://doi.org/10.1155/2023/2766250.

[63]

Lou H, Liu X, Liu P. Mechanism and implications of pro-nature physical activity in antagonizing psychological stress: the key role of microbial-gut-brain axis. Front Psychol, 2023, 14: 1143827.

[64]

Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of bifidobacterium spp. From breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int (Ottawa Ont), 2024, 196: 115092.

[65]

Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: A review of the Evidence, potential Mechanisms, and implications for human health. Exerc Sport Sci Rev, 2019, 47(2): 75-85.

[66]

Mancin L, Burke LM, Rollo I. Fibre: the forgotten carbohydrate in sports nutrition recommendations. 2025;55(5):1067–83. https://doi.org/10.1007/s40279-024-02167-1.

[67]

Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain axis: from motility to mood. Gastroenterology, 2021, 160(5): 1486-501.

[68]

Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome axis. Cell Mol Gastroenterol Hepatol, 2018, 6(2): 133-48.

[69]

Matijašić M, Meštrović T, Paljetak , Perić M, Barešić A, Verbanac D. Gut microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and eukaryotic parasites in IBD. Int J Mol Sci, 2020, 21(8): 2668.

[70]

Mazzoli R, Pessione E. The Neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol, 2016, 7: 1934.

[71]

Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med (Auckland N Z), 2006, 36(10): 881-909.

[72]

Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biology Reviews: MMBR, 2017, 81(4): e00036-17.

[73]

Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr, 2020, 17(1): 24.

[74]

Mondragón-Palomino O, Poceviciute R, Lignell A, Griffiths JA, Takko H, Ismagilov RF. Three-dimensional imaging for the quantification of Spatial patterns in microbiota of the intestinal mucosa. Proc Natl Acad Sci USA, 2022, 119(18): e2118483119.

[75]

Moreno-Pérez D, Bressa C, Bailén M, Hamed-Bousdar S, Naclerio F, Carmona M, Pérez M, González-Soltero R, Montalvo-Lominchar MG, Carabaña C, Larrosa M. Effect of a protein supplement on the gut microbiota of endurance athletes: A Randomized, Controlled, Double-Blind pilot study. Nutrients, 2018, 10(3): 337.

[76]

Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stølen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjørås M, Wisløff U, Storm-Mathisen J, Bergersen LH. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun, 2017, 8: 15557.

[77]

Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP, Hepple RT, Kraus WE, Reid MB, Bodine SC, Jakicic JM, Fleg JL, Williams JP, Joseph L, Evans M, Maruvada P, Rodgers M, Roary M, Boyce AT, Drugan JK, Koenig JI, Ingraham RH, Krotoski D, Garcia-Cazarin M, McGowan JA, Laughlin MR. Understanding the cellular and molecular echanisms of physical activity- induced ealth enefits. Cell. 2015;22(1):4–11. https://doi.org/10.1016/j.cmet.2015.05.011.

[78]

Nicolas S, Dohm-Hansen S, Lavelle A, Bastiaanssen TFS, English JA, Cryan JF, Nolan YM. Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Translational Psychiatry, 2024, 14(1): 195.

[79]

O’Donovan CM, Madigan SM, Garcia-Perez I, Rankin A, O’ Sullivan O, Cotter PD. Distinct Microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport, 2020, 23(1): 63-8.

[80]

Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, Ohashi N, Sato D, Fujita Y, Maegawa H. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab, 2019, 316(5): E956-66.

[81]

Park SS, Park SH, Jeong HT, Shin MS, Kim MK, Kim BK, Yoon HS, Kim SH, Kim TW. The effect of treadmill exercise on memory function and gut microbiota composition in old rats. J Exerc Rehabilitation, 2024, 20(6): 205-12.

[82]

Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, Sodergren E, Weinstock GM. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 2017, 5(1): 98.

[83]

Rubiola S, Moroni B, Carisio L, Rossi L, Chiesa F, Martano G, Cavallo E, Rambozzi L. Risk factors for bovine cysticercosis in North-West Italy: a multi-year case-control study. Animals (Basel). 2021;11(11):3049. https://doi.org/10.3390/ani12050636.

[84]

Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez-Guardado I. Examining the interaction between Exercise, gut Microbiota, and neurodegeneration. Future Res Dir Biomedicines, 2023, 11(8): 2267.

[85]

Ruan S, Liu J, Yuan X, Ye X, Zhang Q. Aerobic exercise alleviates cognitive impairment in T2DM mice through gut microbiota. Sci Rep, 2025, 15(1): 23917.

[86]

Rubiola S, Macori G, Civera T, Fanning S, Mitchell M, Chiesa F. Comparison between full-length 16S rRNA metabarcoding and whole metagenome sequencing suggests the use of either is suitable for large-scale microbiome studies. Foodborne Pathog Dis, 2022, 19(7): 495-504.

[87]

Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol, 2023, 14: 1130689.

[88]

Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of Bacteria-Gut-Brain signals. Trends Neurosci, 2016, 39(11): 763-81.

[89]

Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, Cryan JF, Burnet PWJ. The microbiome in psychology and cognitive neuroscience. Trends Cogn Sci. 2018;22(7):611–36. https://doi.org/10.1016/j.tics.2018.04.006.

[90]

Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med, 2019, 25(7): 1104-9.

[91]

Schiffer T, Schulte S, Sperlich B, Achtzehn S, Fricke H, Strüder HK. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci Lett, 2011, 488(3): 234-7.

[92]

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-Brain communication. Front Endocrinol, 2020, 11: 25.

[93]

Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut Microbiome and implications for human health. J Translational Med, 2017, 15(1): 73.

[94]

Skonieczna-Żydecka K, Marlicz W, Misera A, Koulaouzidis A, Łoniewski I. Microbiome-the missing link in the Gut-Brain axis: focus on its role in gastrointestinal and mental health. J Clin Med, 2018, 7(12): 521.

[95]

Smith RP, Easson C, Lyle SM, Kapoor R, Donnelly CP, Davidson EJ, Parikh E, Lopez JV, Tartar JL. Gut Microbiome diversity is associated with sleep physiology in humans. PLoS ONE, 2019, 14(10): e0222394.

[96]

Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R. Cohabiting family members share microbiota with one another and with their dogs. eLife, 2013, 2: e00458.

[97]

Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr, 2014, 59(1): 78-88.

[98]

Soudzilovskaia NA, He J, Rahimlou S, Abarenkov K, Brundrett MC, Tedersoo LFungalRoot v.2.0 - an empirical database of plant mycorrhizal traits: a response to Bueno et al.. Towards a consistent benchmark for plant mycorrhizal association databases. New Phytol, 2022, 235(5): 1689-91.

[99]

Stasi C, Sadalla S, Milani S. The relationship between the serotonin Metabolism, Gut-Microbiota and the Gut-Brain axis. Curr Drug Metab, 2019, 20(8): 646-55.

[100]

Tooley KL. Effects of the human gut microbiota on cognitive Performance, brain structure and function. Narrative Rev Nutrients, 2020, 12(10): 3009.

[101]

Ulusan Bagci O, Caner A. The interaction of gut microbiota with parasitic protozoa. J Parasit Dis, 2022, 46(1): 8-11.

[102]

Vazquez-Medina A, Rodriguez-Trujillo N, Ayuso-Rodriguez K, Marini-Martinez F, Angeli-Morales R, Caussade-Silvestrini G, Godoy-Vitorino F, Chorna N. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis. Front Microbiol, 2024, 15: 1326584.

[103]

Wang S, Wei Y, Liu L, Li Z. Association between breastmilk microbiota and food allergy in infants. Front Cell Infect Microbiol, 2022, 11: 770913-17.

[104]

Wang J, Lu T, Gui Y, Zhang X, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A controls cerebral lactate homeostasis to maintain hippocampal neurogenesis and mood stabilization. Translational Psychiatry, 2023, 13(1): 280.

[105]

Wang J, Zhang Q, Xia J, Sun H. Moderate treadmill exercise modulates gut microbiota and improves intestinal barrier in high-fat-diet-induced obese mice via the AMPK/CDX2 signaling pathway. Diabetes Metabolic Syndrome Obesity: Targets Therapy, 2022, 15: 209-23.

[106]

Wang R, Cai Y, Li J, Yau SY, Lu W, Stubbs B, Su KP, Xu G, So KF, Lin K, Qi LW. Effects of aerobic exercise on gut microbiota in adolescents with subthreshold mood syndromes and healthy adolescents: A 12-week, randomized controlled trial. J Affect Disord, 2021, 293: 363-72.

[107]

Wang R, Cai Y, Lu W, Zhang R, Shao R, Yau SY, Stubbs B, McIntyre RS, Su KP, Xu G, Qi L, So KF, Lin K. Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled trial. Psychiatry Res, 2023, 319: 115005.

[108]

Watanabe C, Oyanagi E, Aoki T, Hamada H, Kawashima M, Yamagata T, Kremenik MJ, Yano H. Antidepressant properties of voluntary exercise mediated by gut microbiota. Biosci Biotechnol Biochem, 2023, 87(11): 1407-19.

[109]

Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and Gastrointestinal disturbances. mBio, 2012, 3(1): e00261-11.

[110]

Wu A, Lee D, Xiong WC. Lactate Metabolism, Signaling, and function in brain Development, synaptic Plasticity, Angiogenesis, and neurodegenerative diseases. Int J Mol Sci, 2023, 24(17): 13398.

[111]

Xia WJ, Xu ML, Yu XJ, Du MM, Li XH, Yang T, Li L, Li Y, Kang KB, Su Q, Xu JX, Shi XL, Wang XM, Li HB, Kang YM. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes, 2021, 13(1): 1-24.

[112]

Donati Zeppa S, Agostini D, Gervasi M, Annibalini G, Amatori S, Ferrini F, Sisti D, Piccoli G, Barbieri E, Sestili P, Stocchi V. Mutual interactions among exercise sport supplements microbiota. Nutrients, 2019, 12(1): 17.

[113]

Zhang Z, Xu D, Fang J, Wang D, Zeng J, Liu X, Hong S, Xue Y, Zhang X, Zhao X. Situ live imaging of gut microbiota. mSphere, 2021, 6(5): e0054521.

Funding

Università degli Studi di Verona

RIGHTS & PERMISSIONS

The Author(s)

PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

/