Novel Correlations Between Lung Function and Gut Microbial-Produced VOCs in the Exhaled Breath of Ultramarathon Runners: Insights from the 2019 Ultra-Trail du Mont Blanc

Hsuan Chou , Amy Craster , Kayleigh Arthur , Billy Boyle , Max Allsworth , Eli F. Kelley , Glenn M. Stewart , Courtney M. Wheatley-Guy , Jesse Schwartz , Caitlin C. Fermoyle , Briana L. Ziegler , Kay A. Johnson , Paul Robach , Patrick Basset , Bruce D. Johnson

Journal of Science in Sport and Exercise ›› : 1 -9.

PDF
Journal of Science in Sport and Exercise ›› :1 -9. DOI: 10.1007/s42978-025-00331-1
Original Article
research-article

Novel Correlations Between Lung Function and Gut Microbial-Produced VOCs in the Exhaled Breath of Ultramarathon Runners: Insights from the 2019 Ultra-Trail du Mont Blanc

Author information +
History +
PDF

Abstract

Purpose

Volatile organic compounds (VOCs) in exhaled breath change significantly after ultramarathons and could help monitor athletes’ physiological status to optimize training. In this study, we investigated how breath VOCs are linked to clinical variables that reflect the cardiovascular and respiratory system.

Methods

Correlation analysis was performed between blood and respiratory data collected in pre- and post-race samples from 24 elite runners who participated in the 2019 Ultra-Trail du Mont Blanc (UTMB®) ultramarathon. Correlation analysis was then performed between these clinical data and previously published breath VOC data collected from the same individuals.

Results

Post-race clinical data showed decreased lung function compared to pre-race. Notably, respiratory parameters, vital capacity (VC) and forced expiratory volume (FEV1), showed positive moderate correlation with VOC 2,3-butanediol (r = 0.53, r = 0.63), a compound produced by bacterial metabolism. We hypothesize that the increase in 2,3-butanediol in post-race breath results from exercise-induced changes in gut microbiome activity, potentially protecting against lung injury. Additionally, correlations between lung function and respiratory muscle function strengthened post-race (VC/FEV1, r = 0.67 to r = 0.84; forced vital capacity (FVC)/maximal expiratory pressure (MEP), r = 0.57 to r = 0.75; FEV1 and MEP, r < 0.5 to r = 0.73). This suggests that exercise-induced changes in gut microbiome activity may indirectly influence these functions.

Conclusion

Our findings support the notion of an intricate relationship between exhaustive exercise, altered gut microbiome activity, and lung function, and together they can influence the physiological status and performance of athletes.

Keywords

Breath / Volatile Organic Compounds / Exhaustive Exercise / Gut Microbiome / Respiratory

Cite this article

Download citation ▾
Hsuan Chou, Amy Craster, Kayleigh Arthur, Billy Boyle, Max Allsworth, Eli F. Kelley, Glenn M. Stewart, Courtney M. Wheatley-Guy, Jesse Schwartz, Caitlin C. Fermoyle, Briana L. Ziegler, Kay A. Johnson, Paul Robach, Patrick Basset, Bruce D. Johnson. Novel Correlations Between Lung Function and Gut Microbial-Produced VOCs in the Exhaled Breath of Ultramarathon Runners: Insights from the 2019 Ultra-Trail du Mont Blanc. Journal of Science in Sport and Exercise 1-9 DOI:10.1007/s42978-025-00331-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med, 2002, 166(4): 518-624.

[2]

BellLR, WallenMP, TalpeySW, MyersMA, O'BrienBJ. Can exhaled volatile organic compounds differentiate high and low responders to resistance exercise?. Med Hypotheses, 2022, 162. 110837

[3]

ChiuYC, LeeSW, LiuCW, LanTY, WuLS. Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study. Respir Res, 2022, 23110.

[4]

ChouH, ArthurK, ShawE, SchaberC, BoyleB, AllsworthM, KelleyEF, StewartGM, WheatleyCM, SchwartzJ, FermoyleCC. Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. J Breath Res, 2024, 182. 026008

[5]

ChouH, GodbeerL, AllsworthM, BoyleB, BallML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics, 2024, 20472.

[6]

DweikRA. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med, 2011, 184(5): 602-615.

[7]

FermoyleCC, StewartGM, BorlaugBA, JohnsonBD. Simultaneous measurement of lung diffusing capacity and pulmonary hemodynamics reveals exertional alveolar-capillary dysfunction in heart failure with preserved ejection fraction. J Am Heart Assoc, 2021, 1016. e019950

[8]

GrahamBL, SteenbruggenI, MillerMR, BarjaktarevicIZ, CooperBG, HallGL, HallstrandTS, KaminskyDA, McCarthyK, McCormackMC, OropezCE. Standardization of spirometry 2019 update. An official american thoracic society and european respiratory society technical statement. Am J Respir Crit Care Med, 2019, 200(8): e70-e88.

[9]

HeaneyLM, LindleyMR. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics, 2017, 13: 1-19.

[10]

HsiehSC, LuCC, HorngYT, SooPC, ChangYL, TsaiYH, LinCS, LaiHC. The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect, 2007, 9(12–13): 1402-1409.

[11]

KingGG, BatesJ, BergerKI, CalverleyP, de MeloPL, DellacàRL, FarréR, HallGL, IoanI, IrvinCG, KaczkaDW. Technical standards for respiratory oscillometry. Eur Respir J, 2020, 5521900753.

[12]

KingJ, KupferthalerA, UnterkoflerK, KocH, TeschlS, TeschlG, MiekischW, SchubertJ, HinterhuberH, AmannA. Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res, 2009, 32. 027006

[13]

KłapcińskaB, WaśkiewiczZ, ChrapustaSJ, Sadowska-KrępaE, CzubaM, LangfortJ. Metabolic responses to a 48-h ultra-marathon run in middle-aged male amateur runners. Eur J Appl Physiol, 2013, 113(11): 2781-2793.

[14]

LaiHC, ChangCJ, YangCH, HsuYJ, ChenCC, LinCS, TsaiYH, HuangTT, OjciusDM, TsaiYH, LuCC. Activation of NK cell cytotoxicity by the natural compound 2,3-butanediol. J Leukoc Biol, 2012, 92(4): 807-814.

[15]

LeeJH, ZhuJ. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood), 2021, 246(7): 778-789.

[16]

LewisGD, FarrellL, WoodMJ, MartinovicM, AranyZ, RoweGC, SouzaA, ChengS, McCabeEL, YangE, ShiX. Metabolic signatures of exercise in human plasma. Sci Transl Med, 2010, 23333ra37.

[17]

LiNN, LiW, FengJX, DuB, ZhangR, DuSH, LiuSY, XueGH, YanC, CuiJH, ZhaoHQ. High alcohol-producing Klebsiellapneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes, 2021, 1311979883.

[18]

MacintyreN, CrapoRO, ViegiG, JohnsonDC, Van Der GrintenCP, BrusascoV, BurgosF, CasaburiR, CoatesA, EnrightP, GustafssonP. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J, 2005, 26(4): 720-735.

[19]

MitchellC, RahkoPS, BlauwetLA, CanadayB, FinstuenJA, FosterMC, HortonK, OgunyankinKO, PalmaRA, VelazquezEJ. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American society of echocardiography. J Am Soc Echocardiogr, 2019, 32(1): 1-64.

[20]

PeltriniR, CordellRL, WildeM, AbuhelalS, QuekE, Zounemat-KermaniN, IbrahimW, RichardsonM, BrinkmanP, SchleichF, StefanutoPH. Discovery and validation of a volatile signature of eosinophilic airway inflammation in asthma. Am J Respir Crit Care Med, 2024, 210: 1101-1112.

[21]

PicanoE, FrassiF, AgricolaE, GligorovaS, GarganiL, MottolaG. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr, 2006, 19(3): 356-363.

[22]

Robson-AnsleyP, HowatsonG, TallentJ, MitchesonK, WalsheI, TomsC, ToitGD, SmithM, AnsleyL. Prevalence of allergy and upper respiratory tract symptoms in runners of the London marathon. Med Sci Sports Exerc, 2012, 44(6): 999-1004.

[23]

SalineroJJ, SorianoML, Ruiz-VicenteD, Gonzalez-MillanC, ArecesF, Gallo-SalazarC, Abian-VicenJ, LaraB, Del CosoJ. Respiratory function is associated to marathon race time. J Sports Med Phys Fitness, 2016, 56(12): 1433-1438

[24]

SatoM, SuzukiY. Alterations in intestinal microbiota in ultramarathon runners. Sci Rep, 2022, 1216984.

[25]

ScheimanJ, LuberJM, ChavkinTA, MacDonaldT, TungA, PhamLD, WibowoMC, WurthRC, PunthambakerS, TierneyBT, YangZ. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med, 2019, 25(7): 1104-1109.

[26]

TillerNB, StewartGM, IllidiCR, LevineBD. Exercise is medicine? The cardiorespiratory implications of ultra-marathon. Curr Sports Med Rep, 2020, 19(8): 290-297.

[27]

VeeravalliS, VarshaviD, ScottFH, VarshaviD, PullenFS, VeselkovK, PhillipsIR, EverettJR, ShephardEA. Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of Fmo5 (-/-) mice, decreases plasma cholesterol and epididymal fat deposition. Front Physiol, 2022, 13. 859681

[28]

VolpicelliG, ElbarbaryM, BlaivasM, LichtensteinDA, MathisG, KirkpatrickAW, MelnikerL, GarganiL, NobleVE, ViaG, DeanA. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med, 2012, 38(4): 577-591.

[29]

WebnerD, DuPreyKM, DreznerJA, CronholmP, RobertsWO. Sudden cardiac arrest and death in United States marathons. Med Sci Sports Exerc, 2012, 44(10): 1843-1845.

[30]

ZavorskyGS, HsiaCC, HughesJM, BorlandCD, GuénardH, Van Der LeeI, SteenbruggenI, NaeijeR, CaoJ, Dinh-XuanAT. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur Respir J, 2017, 4921600962.

[31]

ZhangD, LiS, WangN, TanHY, ZhangZ, FengY. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol, 2020, 11301.

Funding

Mayo Clinic

RIGHTS & PERMISSIONS

Beijing Sport University

PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

/