Reliability of Exhaled Acetone and Isoprene in Healthy Active Adult Responses to Sub-maximal Treadmill Exercise: A Pilot Study

Leo R. Bell , Mark A. Myers , Jack T. Harvey , Declan Hennessy , Ryan L. Worn , Matthew P. Wallen , Greg Davis , Brendan J. O’Brien

Journal of Science in Sport and Exercise ›› : 1 -9.

PDF
Journal of Science in Sport and Exercise ›› : 1 -9. DOI: 10.1007/s42978-025-00327-x
Original Article

Reliability of Exhaled Acetone and Isoprene in Healthy Active Adult Responses to Sub-maximal Treadmill Exercise: A Pilot Study

Author information +
History +
PDF

Abstract

This study investigates the test–retest reliability of exhaled acetone and isoprene as potential biomarkers for monitoring exercise-induced physiological changes. Ten healthy active males (age 22.7 ± 3.7 years, height 182.4 ± 6.8 cm, body mass 80.12 ± 8.5 kg, body mass index 24.0 ± 1.4 kg/m2, VO2peak 55 ± 4 mL/kg/min, physical activity 322 min/week) provided baseline measures before undergoing a VO2peak test and two treadmill exercise trials, interspersed by 7-days’ rest. Treadmill exercise consisted of 20 min at 80% of VO2peak speed. Breath samples were collected before exercise, 10 min, and 24 h after exercise, using glass containers and solid-phase microextraction fibres, and analysed by gas-chromatography mass-spectrometry. Exhaled acetone exhibited poor internal consistency (Cronbach’s α = − 0.184) and agreement (ICC = − 0.096 [− 0.836–0.607], P = 0.592) with a high technical error (TE = 2.38 × 106) and coefficient of variation (CV = 90%). In contrast, exhaled isoprene provided satisfactory internal consistency (Cronbach’s α 0.817) and good agreement (ICC = 0.699, P = 0.009), with a lower technical error (TE = 1.24 × 106) and coefficient of variation (CV = 28%). Quadratic regression showed a decrease in isoprene 10 min after exercise during trial 1 (P < 0.01) and trial 2 (P < 0.05) and returned to baseline levels after 24 h. While acetone’s reliability was questionable, isoprene levels following 20 min of submaximal treadmill exercise are notably reproducible among healthy active males.

Keywords

Breath analysis / Cardiorespiratory fitness / Coefficient of variation / Exercise testing / Reproducibility / Volatile organic compounds

Cite this article

Download citation ▾
Leo R. Bell, Mark A. Myers, Jack T. Harvey, Declan Hennessy, Ryan L. Worn, Matthew P. Wallen, Greg Davis, Brendan J. O’Brien. Reliability of Exhaled Acetone and Isoprene in Healthy Active Adult Responses to Sub-maximal Treadmill Exercise: A Pilot Study. Journal of Science in Sport and Exercise 1-9 DOI:10.1007/s42978-025-00327-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgerC, MochalskiP, KingJ, MayhewCA, UnterkoflerK. Effect of inhaled acetone concentrations on exhaled breath acetone concentrations at rest and during exercise. J Breath Res, 2020, 142026010.

[2]

AlkedehO, PrieferR. The ketogenic diet: breath acetone sensing technology. Biosensors (Basel), 2021, 11126.

[3]

AndersonJC, BabbAL, HlastalaMP. Modeling soluble gas exchange in the airways and alveoli. Ann Biomed Eng, 2003, 31111402-1422.

[4]

AndersonJC, HlastalaMP. Breath tests and airway gas exchange. Pulm Pharmacol Ther, 2007, 202112-117.

[5]

AtkinsonG, WilliamsonP, BatterhamAM. Issues in the determination of ‘responders’ and ‘non-responders’ in physiological research. Exp Physiol, 2019, 10481215-1225.

[6]

BirkenT, SchubertJ, MiekischW, Nöldge-SchomburgG. A novel visually CO2 controlled alveolar breath sampling technique. Tech Health Care, 2006, 146499-506.

[7]

BoveyF, CrosJ, TuzsonB, SeysselK, SchneiterP, EmmeneggerL, TappyL. Breath acetone as a marker of energy balance: an exploratory study in healthy humans. Nutr Diabetes, 2018, 8150.

[8]

ClizbeDB, OwensML, MasudaKR, ShackelfordJE, KrisansSK. IDI2, a second isopentenyl diphosphate isomerase in mammals. J Biol Chem, 2007, 28296668-6676.

[9]

DrabińskaN, FlynnC, RatcliffeN, BelluomoI, MyridakisA, GouldO, FoisM, SmartA, DevineT, CostelloBDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res, 2021, 153034001.

[10]

EdvardsenE, HemE, AnderssenSA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS ONE, 2014, 91e85276.

[11]

FarhiLE. Elimination of inert gas by the lung. Respir Physiol, 1967, 311-11.

[12]

HeaneyLM, KangS, TurnerMA, LindleyMR, ThomasCLP. The impact of a graded maximal exercise protocol on exhaled volatile organic compounds: a pilot study. Molecules, 2022, 272370.

[13]

HeaneyLM, LindleyMR. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics, 2017, 13: 139.

[14]

KalaposMP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochimica et Biophysica Acta (BBA) - General Subjects, 2003, 16212122-139.

[15]

KingJ, KocH, UnterkoflerK, MochalskiP, KupferthalerA, TeschlG, TeschlS, HinterhuberH, AmannA. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol, 2010, 2674626-637.

[16]

KingJ, KupferthalerA, UnterkoflerK, KocH, TeschlS, TeschlG, MiekischW, SchubertJ, HinterhuberH, AmannA. Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res, 2009, 321-35.

[17]

KingJ, MochalskiP, KupferthalerA, UnterkoflerK, KocH, FilipiakW, TeschlS, HinterhuberH, AmannA. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas, 2010, 3191169-1184.

[18]

KingJ, MochalskiP, TeschlG, TeschlS, MayhewCA, GhorbaniR, SchmidtFM, UnterkoflerKBeauchampJ, DavisC, PleilJ. Physical modeling of exhaled compounds. Breathborne biomarkers and the human volatilome, 2020Amsterdam, NetherlandsElsevier43-62.

[19]

KingJ, UnterkoflerK, TeschlG, TeschlS, KocH, HinterhuberH, AmannA. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J Math Biol, 2011, 635959-999.

[20]

LawalO, AhmedWM, NijsenTME, GoodacreR, FowlerSJ. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics, 2017, 13: 110.

[21]

Martinez-Lozano SinuesP, TarokhL, LiX, KohlerM, BrownSA, ZenobiR, DallmannR. Circadian variation of the human metabolome captured by real-time breath analysis. PLoS ONE, 2014, 912e114422.

[22]

MiekischW, KischkelS, SawackiA, LiebauT, MiethM, SchubertJK. Impact of sampling procedures on the results of breath analysis. J Breath Res, 2008, 22026007.

[23]

MiekischW, SchubertJK, Noeldge-SchomburgGF. Diagnostic potential of breath analysis–focus on volatile organic compounds. Clin Chim Acta, 2004, 3471–225-39.

[24]

Miekisch W, Sukul P, Schubert JK. Origin and emission of volatile biomarkers in Breath: basicsand dynamic aspects. In: Hossam H, editor. Volatile biomarkers for human health: from nature to artificial senses. London: Royal Society of Chemistry; 2023.

[25]

MochalskiP, KingJ, MayhewCA, UnterkoflerK. A review on isoprene in human breath. J Breath Res, 2023, 173037101.

[26]

PrattD, O’BrienBJ, ClarkB. Oxygen uptake in maximal effort constant rate and interval running. Sci World J, 2013, 20131680326.

[27]

PuglieseG, TrefzP, WeippertM, PollexJ, BruhnS, SchubertJK, MiekischW, SukulP. Real-time metabolic monitoring under exhaustive exercise and evaluation of ventilatory threshold by breathomics: independent validation of evidence and advances. Front Physiol, 2022, 13: 946401.

[28]

SchubertR, SchwoebelH, Mau-MoellerA, BehrensM, FuchsP, SklorzM, SchubertJK, BruhnS, MiekischW. Metabolic monitoring and assessment of anaerobic threshold by means of breath biomarkers. Metabolomics, 2012, 861069-1080.

[29]

SchulzE, WoollamM, VashisthaS, AgarwalM. Quantifying exhaled acetone and isoprene through solid phase microextraction and gas chromatography-mass spectrometry. Anal Chim Acta, 2024, 1301: 342468.

[30]

SpanelP, DryahinaK, SmithD. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J Breath Res, 2013, 71017106.

[31]

StoneBG, BesseTJ, DuaneWC, EvansCD, DeMasterEG. Effect of regulating cholesterol biosynthesis on breath isoprene excretion in men. Lipids, 1993, 288705-708.

[32]

SukulP, RichterA, JunghanssC, SchubertJK, MiekischW. Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol, 2023, 61999.

[33]

SukulP, RichterA, SchubertJK, MiekischW. Deficiency and absence of endogenous isoprene in adults, disqualified its putative origin. Heliyon, 2021, 71e05922.

[34]

SukulP, SchubertJK, KamysekS, TrefzP, MiekischW. Applied upper-airway resistance instantly affects breath components: a unique insight into pulmonary medicine. J Breath Res, 2017, 11412.

[35]

SukulP, SchubertJK, OertelP, KamysekS, TaunkK, TrefzP, MiekischW. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests. Sci Rep, 2016, 6112.

[36]

SukulP, TrefzP, KamysekS, SchubertJK, MiekischW. Instant effects of changing body positions on compositions of exhaled breath. J Breath Res, 2015, 94047105.

[37]

SukulP, TrefzP, SchubertJK, MiekischW. Immediate effects of breath holding maneuvers onto composition of exhaled breath. J Breath Res, 2014, 83037102.

[38]

TrefzP, SchmidtSC, SukulP, SchubertJK, MiekischW, FischerD-C. Non-invasive assessment of metabolic adaptation in paediatric patients suffering from type 1 diabetes mellitus. J Clin Med, 2019, 8111797.

[39]

TurnerMA, Guallar-HoyasC, KentAL, WilsonID, ThomasCL. Comparison of metabolomic profiles obtained using chemical ionization and electron ionization MS in exhaled breath. Bioanalysis, 2011, 3242731-2738.

[40]

van der ScheeM, PinheiroH, GaudeE. Breath biopsy for early detection and precision medicine in cancer. E Cancer Med Sci, 2018, 12: ed84.

[41]

WangW, ZhouW, WangS, HuangJ, LeY, NieS, WangW, GuoQ. Accuracy of breath test for diabetes mellitus diagnosis: a systematic review and meta-analysis. BMJ Open Diabetes Res Care, 2021, 91e002174.

Funding

Federation University Australia

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/