Flexural Capacity Evaluation of OTEC Piping System: Finite Element Analysis and Governing Formula

Hensa Akbar Al Kautsar , Ristiyanto Adiputra , Bambang Kusharjanta , Aditya Rio Prabowo , Navik Puryantini , Gerry Giliant Salamena , Bondan Fiqi Riyalda , Oleksiy Melnyk , Martin Jurkovič

Journal of Marine Science and Application ›› : 1 -17.

PDF
Journal of Marine Science and Application ›› : 1 -17. DOI: 10.1007/s11804-025-00675-8
Research Article
research-article

Flexural Capacity Evaluation of OTEC Piping System: Finite Element Analysis and Governing Formula

Author information +
History +
PDF

Abstract

The application of renewable energy plays a crucial role in advancing sustainable development, with one such source being ocean thermal energy conversion (OTEC). OTEC systems harness the temperature difference between sea surface water and deep seawater to generate electricity. A key component of the OTEC system is the piping network, which, despite its importance, has not been extensively studied. Thus, the current study aims to investigate how geometric variations and material properties affect pipe strength and to develop a predictive formula for estimating the pipe’s bending capacity. The analysis uses the finite element method (FEM), starting with a validation phase against previous studies to ensure the accuracy of the scenario and test module settings. A simulation case study is then conducted, focusing on pipe bending by varying pipe geometry and material yield stress. The results of the variation analysis show that each parameter substantially impacts pipe performance. Specifically, a smaller length-to-diameter (L/D) ratio results in a stiffer pipe, as does a smaller diameter-to-thickness (D/t) ratio. In addition, materials with low yield strength deform easily. Using the test data, a nonlinear regression model was developed to generate a predictive formula for estimating the ultimate flexural capacity of the pipe. The validation results of this formula show that the developed equation is highly accurate and outperforms existing empirical formulas. This study provides valuable insights for designing efficient and optimized OTEC piping systems, offering a fast and accurate estimation tool.

Keywords

Renewable energy structure / Cylindrical shell / Ultimate bending moment / Nonlinear regression / Governing equation

Cite this article

Download citation ▾
Hensa Akbar Al Kautsar, Ristiyanto Adiputra, Bambang Kusharjanta, Aditya Rio Prabowo, Navik Puryantini, Gerry Giliant Salamena, Bondan Fiqi Riyalda, Oleksiy Melnyk, Martin Jurkovič. Flexural Capacity Evaluation of OTEC Piping System: Finite Element Analysis and Governing Formula. Journal of Marine Science and Application 1-17 DOI:10.1007/s11804-025-00675-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adie PW, Adiputra R, Prabowo AR, Erwandi E, Muttaqie T, Muhayat N, Huda N. Assessment of the OTEC cold water pipe design under bending loading: A benchmarking and parametric study using finite element approach. Journal of the Mechanical Behavior of Materials, 2023, 32(1): 20220298.

[2]

Adie PW, Prabowo AR, Muttaqie T, Adiputra R, Muhayat N, Carvalho H, Huda N. Non-linear assessment of cold water pipe (CWP) on the ocean thermal energy conversion (OTEC) installation under bending load. Procedia Structural Integrity, 2023, 47: 142-149.

[3]

Adiputra R, Habib MI, Rahuna D, Muttaqie T, Erwandi, Prabowo AR, Mintarso CSJ. On the dynamic stability of OTEC cold water pipe (CWP) under variations of force balance descriptions at the free inlet. Evergreen, 2023, 10(3): 1674-1682.

[4]

Adiputra R, Utsunomiya T. Finite element modelling of ocean thermal energy conversion (OTEC) cold water pipe (CWP. ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2022-78135, 2022

[5]

Al Kautsar HA, Adiputra R, Prabowo AR, Djordjevic B, Jurkovič M. Structural integrity of tapered cylindrical shell: Study case of tower wind turbine. E3S Web of Conferences, 2024, 563: 02033.

[6]

Al Kautsar HA, Pratama AA, Suryanto S, Prabowo AR, Adiputra R, Sukanto H, Kusharjanta B, Carvalho H. Structural analysis of designed tubes under axial compression: Variations of applied temperature, material type, and geometry design. Communications-Scientific Letters of the University of Zilina, 2024, 26(3): B199-B215.

[7]

Al-Qureshi HA. Elastic-plastic analysis of tube bending. International Journal of Machine Tools and Manufacture, 1999, 39(1): 87-104.

[8]

Alanazi MA, Aloraini M, Islam M, Alyahya S, Khan S. Wind energy assessment using weibull distribution with different numerical estimation methods: A case study. Emerging Science Journal, 2023, 7(6): 2260-2278.

[9]

Alawadhi K, Alhouli Y, Ashour A, Alfalah A. Design and optimization of a radial turbine to be used in a rankine cycle operating with an OTEC system. Journal of Marine Science and Engineering, 2020, 8(11): 855.

[10]

Alzabeebee S, Chapman DN, Faramarzi A. Economical design of buried concrete pipes subjected to UK standard traffic loading. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2019, 172(2): 141-156.

[11]

Anderson JH. Ocean thermal energy conversion (OTEC): Choosing a working fluid. ASME 2009 Power Conference, 2009645-653

[12]

Avery WH, Wu CRenewable energy from the ocean: a guide to OTEC, 1994.

[13]

Brazier LG. On the flexure of thin cylindrical shells and other “thin” sections. Proceedings of the Royal Society of London. Series A, 1927, 116: 104-114

[14]

Chen YN, Kempner J. Buckling of oval cylindrical shells under compression and asymmetric bending. AIAA Journal, 1976, 14(9): 1235-1240.

[15]

Chen Z, Pu S, Wang H. Numerical analysis on the bending capacity of the concrete-filled micro-steel-tube piles. Mathematical Problems in Engineering, 2022, 2022: 2317594.

[16]

Chwalla E. Reine Biegung schlanker, dünnwandiger Rohre mit gerader Achse. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 1933, 13(1): 48-53.

[17]

Dambolena IG, Eriksen SE, Kopcso DP. Logarithmic transformations in regression: Do you transform back correctly?. PRIMUS, 2009, 19(3): 280-295.

[18]

Dassault Systèmes SimuliaAbaqus Scripting User’s Manual, 2011

[19]

Elchalakani M, Zhao XL, Grzebieta RH. Plastic mechanism analysis of circular tubes under pure bending. International Journal of Mechanical Sciences, 2002, 44(6): 1117-1143.

[20]

Fabian O. Collapse of cylindrical, elastic tubes under combined bending, pressure and axial loads. International Journal of Solids and Structures, 1977, 13(12): 1257-1270.

[21]

Fajri A, Jurkovič M, Kandimba EM, Lutanto A, Falah F, Adiputra R, Firdaus N. Recent advancements in ocean current turbine blade design: A review of geometrical shape, performance and potential development using caE. Mekanika: Majalah Ilmiah Mekanika, 2024, 23: 108-123.

[22]

Fauzi FN, Puryantini N, Prabowo AR, Adiputra R, Carvalho H, Tjahjana D D D P, Firdaus N, Jurkovič M. Implementation assessment of the offshore wind turbine (OWT) for remote regions’ electrification in indonesia based on geographical potential and economic attractiveness. Engineered Science, 2024

[23]

Felippa CA, Chung JS. Nonlinear static analysis of deep ocean mining pipe—Part I: Modeling and formulation. Journal of Energy Resources Technology, 1981, 103(1): 11-15.

[24]

Firmansyah AI, Mukhtasor, Satrio D, Rahmawati S, Ikhwani H, Pratikto WA. A study of the temperature distribution in the OTEC cold water pipe using a heat and mass transfer approach. IOP Conference Series: Earth and Environmental Science, 2024, 1372(1): 012018

[25]

Fontaine KDDetermination of optimum plate heat exchanger geometry for OTEC based on net power maximization (Issue March), 2022

[26]

Fontaine KD, Yasunaga T, Ikegami Y. OTEC Maximum net power output using carnot cycle and application to simplify heat exchanger selection. Entropy, 2019, 21(12): 1143.

[27]

Fumo N, Biswas MAR. Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews, 2015, 47: 332-343.

[28]

Ganic EN, Wu J. On the selection of working fluids for OTEC power plants. Energy Conversion and Management, 1980, 20(1): 9-22.

[29]

González-Rogado AB, Rodríguez-Conde MJ, Olmos-Migueláñez S, Borham M, García-Peñalvo FJ. Key factors for determining student satisfaction in engineering: A regression study. International Journal of Engineering Education (IJEE), 2014, 30: 576-584

[30]

Gupta A, Sharma A, Goel A. Review of regression analysis models. International Journal of Engineering Research and Technology, 2017, 6(08): 58-61

[31]

Habib MI, Adiputra R, Prabowo AR, Erwandi E, Muhayat N, Yasunaga T, Ehlers S, Braun M. Internal flow effects in OTEC cold water pipe: Finite element modelling in frequency and time domain approaches. Ocean Engineering, 2023, 288: 116056.

[32]

Karamanos SA. Bending instabilities of elastic tubes. International Journal of Solids and Structures, 2002, 39(8): 2059-2085.

[33]

Kyriakides S, Ok A, Corona E. Localization and propagation of curvature under pure bending in steel tubes with Lüders bands. International Journal of Solids and Structure, 2008, 45: 3074-3087.

[34]

Ladokun LL. Hydrodynamic performance assessment of straight and helical hydrokinetic turbine hydrofoil-blade sections in river oyun, north-central Nigeria. Mekanika: Majalah Ilmiah Mekanika, 2024, 23: 168-177.

[35]

Lo H, Crate H, Schwartz EBBuckling of thin walled cylinder under axial compression and internal pressure (NACA-TR-1027), 1951United StatesNational Technical Information Service

[36]

Lundquis UEStrength Tests of Thin-walled Duralumin Cylinders in Pure Bending (NACA-TN-479), 1933United StatesNational Technical Information Service

[37]

Lutfi YM, Adiputra R, Prabowo AR, Utsunomiya T, Erwandi E, Muhayat N. Assessment of the stiffened panel performance in the OTEC seawater tank design: Parametric study and sensitivity analysis. Theoretical and Applied Mechanics Letters, 2023, 13(4): 100452.

[38]

Mansour MZ, Shehata AS, Shehata AI, ElSafty AF. Techno selection approach of working fluid for enhancing the OTEC system performance. 2020 3rd International Conference on Power and Energy Applications (ICPEA), 2020154-158.

[39]

Masutani SM, Takahashi PK. Ocean thermal energy conversion (OTEC). Encyclopedia of Ocean Sciences, 20011993-1999.

[40]

Montgomery DC, Peck EA, Vining GGIntroduction to linear regression analysis, 20216th Edition

[41]

Mork KJ, Spiten J, Torselletti E, Ness OB, Verley R. The SUPERB project & DNV’96: buckling and collapse limit state. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (Offshore Technology), 199779-89J-GLOBAL ID:200902128119197447

[42]

Myers RH, Montgomery DC, Vining GG, Obinson TJGeneralized linear models: with applications in engineering and the sciences, 2012

[43]

Naufal AM, Prabowo AR, Muttaqie T, Hidayat A, Adiputra R, Muhayat N, Hadi S, Yaningsih I. Three-point bending assessment of cold water pipe (CWP) sandwich material for ocean thermal energy conversion (OTEC). Procedia Structural Integrity, 2023, 47: 133-141.

[44]

Nihous GC. An estimate of atlantic ocean thermal energy conversion (OTEC) resources. Ocean Engineering, 2007, 34(17–18): 2210-2221.

[45]

Polenta V, Garvey SD, Chronopoulos D, Long AC, Morvan HP. Optimal internal pressurisation of cylindrical shells for maximising their critical bending load. Thin-Walled Structures, 2015, 87: 133-138.

[46]

Prabowoputra DM, Hadi S, Prabowo AR, Sohn JM. Performance investigation of the savonius horizontal water turbine accounting for stage rotor design. International Journal of Mechanical Engineering and Robotics Research, 2020, 9: 184-189.

[47]

Prasetyo SD, Prabowo AR, Arifin Z. The effect of collector design in increasing PVT performance: Current state and milestone. Materials Today: Proceedings, 2022, 63: S1-S9

[48]

Rajagopalan K, Nihous GC. Estimates of global Ocean Thermal Energy Conversion (OTEC) resources using an ocean general circulation model. Renewable Energy, 2013, 50: 532-540.

[49]

Rasgianti, Adiputra R, Nugraha AD, Sitanggang RB, Pandoe WW, Aprijanto, Yasunaga T, Santosa MA. System Parameters Sensitivity Analysis of Ocean Thermal Energy Conversion. Emerging Science Journal, 2024, 8(2): 428-448.

[50]

Rasgianti, Adiputra R, Nugraha AD, Firdaus N, Sitanggang RB, Puryantini N, Yasunaga T. Design optimization of stiffening system for ocean thermal energy conversion (OTEC) cold water pipe (CWP). Results in Engineering, 2024, 23: 102863.

[51]

Rosli MAM, Mahadi AA, Harsito C, Prasetyo SD. Design of a solar power plant system for government buildings in the ibu kota nusantara of indonesia using homer optimization. Mekanika: Majalah Ilmiah Mekanika, 2025, 24: 7-19.

[52]

Shame BH, Haji MM, Prasetyo SD. Implementation of rooftop solar photovoltaic systems in educational facilities at ibu kota nusantara (ikn). Mekanika: Majalah Ilmiah Mekanika, 2025, 24: 20-34.

[53]

Stephens WB, Starnes JH, Almorth BOCollapse of Long Cylindrical Shells Under Combined Bending and Pressure Loads, 197520-25

[54]

Struct XBending on Tube/Pipe FP Butt Weld, 2024

[55]

Suer HS, Harris LA, Skene WT, Benjamin RJ. The bending stability of thin-walled unstiffened circular cylinders including the effects of internal pressure. Journal of The Aeronautical Sciences, 1958, 25(5): 281-287

[56]

Syamsuddin ML, Attamimi A, Nugraha AP, Gibran S, Afifah AQ, Oriana N. OTEC Potential in the Indonesian Seas. Energy Procedia, 2015, 65: 215-222.

[57]

Timoshenko SP, Gere JMTheory of Elastic Stability, 20092nd Edition

[58]

Uehara H, Nakaoka T, Takeishi S, Ikegami Y. Optimization of turbine for OTEC: Ammonia as a working fluid. Transactions of the Japan Society of Mechanical Engineers Series B, 1989, 55: 2346-2354.

[59]

Visuvasam JA, Chandrasekaran SS. Effect of spacing and slenderness ratio of piles on the seismic behavior of building frames. Buildings, 2022, 12(12): 2050.

[60]

Wu Z, Feng H, Chen L, Xie Z, Cai C, Xia S. Optimal design of dual-pressure turbine in OTEC system based on constructal theory. Energy Conversion and Management, 2019, 201: 112179.

[61]

Yadav KK, Gerasimidis S. Instability of thin steel cylindrical shells under bending. Thin-Walled Structures, 2019, 137: 151-166.

[62]

Yang MH, Yeh RH. Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 2014, 68: 25-34.

[63]

Yasunaga T, Fontaine K, Morisaki T, Ikegami Y. Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Ocean Thermal Energy Conversion System, 2017, 1998: 65-75

[64]

Yasunaga T, Noguchi T, Morisaki T, Ikegami Y. Basic heat exchanger performance evaluation method on OTEC. Journal of Marine Science and Engineering, 2018, 6(2): 32.

[65]

Yoon JI, Son CH, Baek SM, Kim HJ, Lee HS. Efficiency comparison of subcritical OTEC power cycle using various working fluids. Heat and Mass Transfer, 2014, 50(7): 985-996.

[66]

Yudo H, Yoshikawa T. Mechanical behaviour of pipe under pure bending load. Proceedings of the 26th Asian-Pacific Technical Exchange and Advisory on Marine Structure, Fukuoka, Japan, 2012

[67]

Yudo H, Yoshikawa T. Buckling phenomenon for straight and curved pipe under pure bending. Journal of Marine Science and Technology, 2015, 20(1): 94-103.

[68]

Zeng WS, Tang SZ. Bias correction in logarithmic regression and comparison with weighted regression for nonlinear models. Nature Proceedings, 2011

[69]

Zhang WG, Goh ATC. Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 2013, 48: 82-95.

RIGHTS & PERMISSIONS

Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/